Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(3): 397-409, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088801

RESUMO

SHP-1 (Src homology region 2 domain-containing phosphatase 1) is a well-known negative regulator of T cells, whereas its close homolog SHP-2 is the long-recognized main signaling mediator of the PD-1 inhibitory pathway. However, recent studies have challenged the requirement of SHP-2 in PD-1 signaling, and follow-up studies further questioned the alternative idea that SHP-1 may replace SHP-2 in its absence. In this study, we systematically investigate the role of SHP-1 alone or jointly with SHP-2 in CD8+ T cells in a series of gene knockout mice. We show that although SHP-1 negatively regulates CD8+ T cell effector function during acute lymphocytic choriomeningitis virus (LCMV) infection, it is dispensable for CD8+ T cell exhaustion during chronic LCMV infection. Moreover, in contrast to the mortality of PD-1 knockout mice upon chronic LCMV infection, mice double deficient for SHP-1 and SHP-2 in CD8+ T cells survived without immunopathology. Importantly, CD8+ T cells lacking both phosphatases still differentiate into exhausted cells and respond to PD-1 blockade. Finally, we found that SHP-1 and SHP-2 suppressed effector CD8+ T cell expansion at the early and late stages, respectively, during chronic LCMV infection.


Assuntos
Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/metabolismo , Exaustão das Células T
2.
Mol Neurobiol ; 60(3): 1132-1149, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36417104

RESUMO

Sleep loss is often associated with cognitive dysfunction. Alterations in the structure and function of synapses in the hippocampus are thought to underlie memory storage. Paired immunoglobulin-like receptor B (PirB) plays a negative role in various neurological diseases by inhibiting axon regeneration and synaptic plasticity. However, the contributions of PirB to the mechanisms underlying the changes in synaptic plasticity after sleep loss that ultimately promote deficits in cognitive function have not been well elucidated. Here, we showed that chronic sleep restriction (CSR) mice displayed cognitive impairment and synaptic deficits accompanied by upregulation of PirB expression in the hippocampus. Mechanistically, PirB caused the dysregulation of actin through the RhoA/ROCK2/LIMK1/cofilin signalling pathway, leading to abnormal structural and functional plasticity, which in turn resulted in cognitive dysfunction. PirB knockdown alleviated synaptic deficits and cognitive impairment after CSR by inhibiting the RhoA/ROCK2/LIMK1/cofilin signalling pathway. Moreover, we found that fasudil, a widely used ROCK2 inhibitor, could mimic the beneficial effect of PirB knockdown and ameliorate synaptic deficits and cognitive impairment, further demonstrating that PirB induced cognitive dysfunction after CSR via the RhoA/ROCK2/LIMK1/cofilin signalling pathway. Our study sheds new light on the role of PirB as an important mediator in modulating the dysfunction of synaptic plasticity and cognitive function via the RhoA/ROCK2/LIMK1/cofilin signalling pathway, which indicated that hippocampal PirB is a promising therapeutic target for counteracting cognitive impairment after CSR. This illustration depicts the signalling pathway by PirB in mediating cognitive impairment and synaptic deficits in CSR mice. In the hippocampus of CSR mice, the expression level of PirB was significantly increased. In addition, CSR increases RhoA and ROCK2 levels and reduces levels of both LIMK1 and cofilin phosphorylation. PirB knockdown reverses cognitive impairment and synaptic plasticity disorders caused by CSR through the RhoA/ROCK2/LIMK1/cofilin signalling pathway.


Assuntos
Axônios , Disfunção Cognitiva , Camundongos , Animais , Axônios/metabolismo , Regeneração Nervosa , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Sono , Fatores de Despolimerização de Actina/metabolismo , Disfunção Cognitiva/metabolismo , Imunoglobulinas/metabolismo , Receptores Imunológicos/metabolismo
3.
Front Immunol ; 13: 854202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844599

RESUMO

Damage-associated molecular patterns (DAMPs) are the primary promoter of progressive neuroinflammation and are associated with chronic stress-related emotional disorders. The present study investigated the role and mechanism of extracellular nucleosomes and histones, the newly defined DAMPs, in mice with chronic stress. C57BL/6 mice were exposed to chronic unpredictable mild stress (CUMS) and corticosterone drinking, respectively, for 4 weeks. Negative emotional behaviors were comprehensively investigated. Microglial morphology, oxidative stress, and inflammation, as well as C-type lectin receptor 2D (Clec2d) and Toll-like receptor 9 (TLR9) expression in medial prefrontal cortex (mPFC) were assessed with flow cytometer and cell sorting. Specifically, microglial pro-inflammatory activation and inflammation were further investigated with stereotactic injection of recombinant nucleosomes and histones in mPFC and further evaluated with AAV-Clec2d knocking-down, DNase I, and activated protein C (APC) pretreatment. Moreover, the rescue effect by AAV-Clec2d knocking-down was observed in mice with chronic stress. Mice with chronic stress were presented as obviously depressive- and anxiety-like behaviors and accompanied with significant microglial oxidative stress and inflammation, indicating by reactive oxygen species (ROS) production, primed nuclear factor-κB (NF-κB) signaling pathway, activated NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome, and upregulated Clec2d and TLR9 in mPFC, together with histones dictation in cerebrospinal fluid and extracellular trap formation. Stereotactic injection of nucleosomes was contributed to promote microglial inflammation rather than histones in mPFC, indicating that the pro-inflammatory role was derived from extracellular histones-bound DNA but not freely histones. AAV-Clec2d knocking-down, DNase I, and APC were all effective to inhibit nucleosome-induced microglial oxidative stress and inflammation. Moreover, AAV-Clec2d knocking-down in mice with chronic stress exhibited reduced microglial inflammation and improved negative emotional behaviors. Our findings reveal a novel mechanism of DAMP-associated inflammation that extracellular nucleosomes accelerate microglial inflammation via Clec2d and TLR9, and then contribute to chronic stress-induced emotional disorders.


Assuntos
Microglia , Receptor Toll-Like 9 , Animais , Desoxirribonuclease I/metabolismo , Histonas/metabolismo , Inflamação/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Nucleossomos/metabolismo , Receptor Toll-Like 9/metabolismo
4.
Med Sci Monit ; 26: e926254, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33017381

RESUMO

BACKGROUND Protein kinase R (PKR) is implicated in the inflammatory response to bacterial infection while the role of PKR in sepsis-induced acute kidney injury (AKI) is largely unknown. This study aimed to investigate the effects of the specific PKR inhibitor C16 (C13H8N4OS) on lipopolysaccharide (LPS)-induced AKI, and its mechanisms of action. MATERIAL AND METHODS C57BL/6J mice were injected intraperitoneally with C16 or vehicle 1 h before the LPS challenge and then injected intraperitoneally with LPS or 0.9% saline. After the LPS challenge, histopathological damage, renal function, and levels of proinflammatory cytokines were assessed. All the related signaling pathways were analyzed. RESULTS C16 effectively inhibited LPS-induced renal elevation of proinflammatory cytokines and chemokines. C16 prevented NF-kappaB activation and suppressed the PKR/eIF2alpha signaling pathway in AKI after the LPS challenge. Furthermore, C16 significantly inhibited pyroptosis during AKI, as evidenced by decreased renal levels of apoptosis-associated speck-like protein; NACHT, LRR, NLR Family Pyrin Domain-Containing 3; caspase-1; interleukin (IL)-1ß; and IL-18. CONCLUSIONS Our findings suggest that inhibition by C16 ameliorated LPS-induced renal inflammation and injury, at least partly through modulation of the pyroptosis signal pathway in the kidney.


Assuntos
Injúria Renal Aguda , Indóis/farmacologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Sepse , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , eIF-2 Quinase/antagonistas & inibidores , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Camundongos , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/patologia , eIF-2 Quinase/metabolismo
5.
Biochem Cell Biol ; 98(4): 458-465, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31905009

RESUMO

Brain-type glycogen phosphorylase (pygb) is one of the rate-limiting enzymes in glycogenolysis that plays a crucial role in the pathogenesis of type 2 diabetes mellitus. Here we investigated the role of pygb in high-glucose (HG)-induced cardiomyocyte apoptosis and explored the underlying mechanisms, by using the specific pygb inhibitors or pygb siRNA. Our results show that inhibition of pygb significantly attenuates cell apoptosis and oxidative stress induced by HG in H9c2 cardiomyocytes. Inhibition of pygb improved glucose metabolism in cardiacmyocytes, as evidenced by increased glycogen content, glucose consumption, and glucose transport. Mechanistically, pygb inhibition activates the Akt-GSK-3ß signaling pathway and suppresses the activation of NF-κB in H9c2 cells exposed to HG. Additionally, pygb inhibition promotes the expression and the translocation of hypoxia-inducible factor-1α (HIF-1α) after HG stimulation. However, the changes in glucose metabolism and HIF-1α activation mediated by pygb inhibition are significantly reversed in the presence of the Akt inhibitor MK2206. In conclusion, this study found that inhibition of pygb prevents HG-induced cardiomyocyte apoptosis via activation of Akt-HIF-α.


Assuntos
Apoptose , Encéfalo/enzimologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Glucose/toxicidade , Glicogênio Fosforilase/antagonistas & inibidores , Miócitos Cardíacos/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais , Edulcorantes/toxicidade
6.
J Pharm Pharmacol ; 71(7): 1142-1151, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30868609

RESUMO

OBJECTIVES: This study was designed to investigate the effects and the mechanism of Tanshinone IIA (TIIA) on endotoxic shock-induced lung injury in a mouse model. METHODS: Mice were administered intraperitoneally with TIIA (10 mg/kg) 0.5 h before lipopolysaccharide (LPS) challenge and then received additional injections every 24 h during the 3-day experimental period. The physiological indexes, the survival rate and the parameters for lung injury were examined. The protein levels of Sirt1, and the acetylation and activation of NF-κB p65 were determined. The expression and secretion of pro-inflammatory factors were evaluated, respectively. KEY FINDINGS: Treatment with TIIA significantly improved physiological indexes and increased the survival rate of mice in response to LPS challenge. TIIA treatment displayed an obvious up-regulation of Sirt1 protein, in accompany with reduced acetylation and activation of NF-κB p65 following LPS stimulation. In addition, TIIA attenuated LPS-induced lung injury and prevented the expression and secretion of pro-inflammatory factors. However, the protective effects of TIIA were abolished by Sirt1 inhibitor. CONCLUSIONS: Tanshinone IIA prevents LPS-induced secretion of pro-inflammatory cytokines thus exerts protective effects against acute lung injury, probably via modulation of Sirt1/NF-κB signalling pathway.


Assuntos
Abietanos/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Sirtuína 1/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Carbazóis/farmacologia , Citocinas/metabolismo , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Choque Séptico/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
7.
Drug Des Devel Ther ; 12: 3573-3582, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498333

RESUMO

BACKGROUND: Asiatic acid is a reported glycogen phosphorylase inhibitor derived from the tropical medicinal plant Centella asiatica and exhibits myocardial protection both in vivo and in vitro. The purpose of this study was to evaluate the effects of asiatic acid on myocardial ischemia/reperfusion (MI/R) injury and investigate the underlying mechanisms associated with the modulation of glycometabolism in cardiomyocyte. MATERIALS AND METHODS: The rats were subjected to MI/R with or without asiatic acid pretreatment. The cardiac function indexes, the size of myocardial infarction, and plasma lactate dehydrogenase (LDH) and creatine kinase (CK) activities were detected. Cardiomyocyte apoptosis was analyzed by TUNEL assay. The Akt/GSK-3ß activation was measured by Western blot. The glycogen content, plasma glucose and lactate concentrations were determined following MI/R. The mRNA and protein levels of PPARγ and GLUT4 were determined by real-time PCR and Western blot, respectively. RESULTS: Asiatic acid pretreatment significantly improved the cardiac function indexes, attenuated the size of myocardial infarction, reduced LDH and CK activities, and suppressed cardiomyocyte apoptosis after MI/R. Asiatic acid activated Akt/GSK-3ß signal pathway in the myocardium following MI/R injury. In addition, asiatic acid effectively suppressed MI/R-induced glycogen breakdown and inhibited the elevation of plasma glucose and lactate concentrations. Asiatic acid treatment increased PPARγ expression at both mRNA and protein levels, and promoted the translocation of GLUT4 to plasma membrane after MI/R insult. However, the effects mediated by asiatic acid on glycometabolism and GLUT4 translocation were reversed by the administration of LY294002, the Akt inhibitor. CONCLUSION: These findings demonstrated that asiatic acid exerts beneficial effects on MI/R injury in rats. This protection may be related to the modulation of glycometabolism via Akt-dependent GLUT4 translocation and PPARγ activation in ischemic cardiomyocyte.


Assuntos
Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Animais , Centella/química , Modelos Animais de Doenças , Transportador de Glucose Tipo 4/metabolismo , Masculino , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA