Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 91: 105633, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336463

RESUMO

Cadmium is a toxic heavy metal with no physiological role in the human body. Cadmium has high mobility due to its widespread industrial use, with no safe and effective therapeutic management. Cadmium toxicity manifests by increasing oxidative stress in target cells. We have explored the potential role of vanillin, a plant phenolic aldehyde and antioxidant, in mitigating cadmium chloride (CdCl2) induced hemotoxicity using isolated human erythrocytes. CdCl2 was added to erythrocytes, in the absence and presence of vanillin. Incubation of erythrocytes with CdCl2 alone inhibited methemoglobin reductase and enhanced methemoglobin level. Heme degradation and release of free iron (Fe2+), along with protein and membrane lipid oxidation, were also increased. A CdCl2-induced enhancement in reactive oxygen and nitrogen species was also seen, lowering the overall antioxidant power of cells. However, pre-incubation of erythrocytes with vanillin resulted in significant decreased generation of reactive species and prevented heme degradation and heme oxidation. Vanillin augmented the erythrocyte antioxidant capacity and reinstated the activities of major antioxidant, plasma membrane-bound and glucose metabolism enzymes. Scanning electron microscopy showed that CdCl2 treatment led to the formation of echinocytes which was prevented by vanillin. In all cases, no harmful effects of vanillin alone were seen. Thus, vanillin alleviates the toxicity of cadmium and can be potentially employed as a chemoprotectant against the damaging effects of this heavy metal.


Assuntos
Antioxidantes , Cloreto de Cádmio , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cádmio/metabolismo , Cloreto de Cádmio/toxicidade , Eritrócitos , Heme/metabolismo , Metais Pesados/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
2.
Pestic Biochem Physiol ; 193: 105453, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248021

RESUMO

Mancozeb is an ethylene bis-dithiocarbamate fungicide extensively used in agriculture to safeguard crops from various fungal diseases. The general population is exposed to mancozeb through consumption of contaminated food or water. Here, we have investigated the effect of mancozeb on isolated human erythrocytes under in vitro conditions. Erythrocytes were treated with different concentrations of mancozeb (0, 5, 10, 25, 50, 100 µM) and incubated for 24 h at 37 °C. Analysis of biochemical parameters and cell morphology showed dose-dependent toxicity of mancozeb in human erythrocytes. Mancozeb treatment caused hemoglobin oxidation and heme degradation. Protein and lipid oxidation were enhanced, while a significant decrease was seen in reduced glutathione and total sulfhydryl content. A significant increase in the generation of reactive oxygen and nitrogen species was detected in mancozeb-treated erythrocytes. The antioxidant capacity and the activity of key antioxidant enzymes were greatly diminished, while crucial metabolic pathways were inhibited in erythrocytes. Damage to the erythrocyte membrane on mancozeb treatment was apparent from increased cell lysis and osmotic fragility, along with the impairment of the plasma membrane redox system. Mancozeb also caused morphological alterations and transformed the normal discoid-shaped erythrocytes into echinocytes and stomatocytes. Thus, mancozeb induces oxidative stress in human erythrocytes, impairs the antioxidant defense system, oxidizes cellular components, that will adversely affect erythrocyte structure and function.


Assuntos
Antioxidantes , Eritrócitos , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Estresse Oxidativo , Oxirredução
3.
Pestic Biochem Physiol ; 191: 105375, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963944

RESUMO

Bioallethrin, a household insecticide, is a member of the pyrethroid family and is known for its adverse effects on human health. Human exposure to pyrethroids is unavoidable due to their widespread use in controlling several fatal vector-borne diseases, mostly in developing nations. Bioallethrin is known to induce oxidative stress in target cells, including erythrocytes. Here we have studied the protective effect of dietary antioxidant esculin on bioallethrin-induced damage in isolated human erythrocytes. The cells were incubated with 200 µM bioallethrin, without or with different concentrations of esculin (200, 400 and 600 µM), and the results compared to the untreated control samples. Bioallethrin-treated erythrocytes showed a significant increase in oxidative stress markers, like protein and lipid oxidation, accompanied by decrease in free amino groups and ratio of reduced to oxidized glutathione. There was enhanced generation of reactive oxygen and nitrogen species with changes in plasma membrane integrity. Bioallethrin oxidized hemoglobin to methemoglobin, which cannot transport oxygen. It altered the activities of antioxidant enzymes and lowered the electron donating and free radical quenching ability of erythrocytes. The cell morphology and redox system of erythrocyte membrane were also altered by bioallethrin. Treatment with esculin, prior to incubation with bioallethrin, led to significant restoration in all these parameters in an esculin concentration-dependent manner. Thus esculin attenuated the biolletherin-induced oxidative damage to erythrocytes. Esculin can, therefore, be an effective chemoprotectant against xenobiotic-induced toxicity in human erythrocytes.


Assuntos
Antioxidantes , Esculina , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Esculina/metabolismo , Esculina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , Eritrócitos , Estresse Oxidativo , Oxigênio/metabolismo , Oxigênio/farmacologia
4.
Biochem Cell Biol ; 100(6): 485-498, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288609

RESUMO

Cadmium chloride (CdCl2) is a widely used industrial compound that exhibits multiple organ toxicity. Cadmium is transported through blood where erythrocytes are exposed to its action. Here the effect of CdCl2 on human erythrocytes was examined under in vitro conditions. Human erythrocytes were treated with 0.01-0.5 mM CdCl2 for 24 h at 37 °C. Lysates were made from CdCl2 treated and untreated (control) cells and used for further analysis. CdCl2 treatment resulted in marked hemolysis of erythrocytes and oxidation of hemoglobin to methemoglobin. This will result in anemia and also reduce the oxygen carrying ability of erythrocytes. Hemoglobin oxidation was accompanied by degradation of heme and release of free ferrous iron moiety. Further analysis showed elevated lipid hydroperoxides and formation of advanced oxidation protein products along with reduction in total sulfhydryl content, indicating the generation of oxidative stress condition in the cell. Incubation of erythrocytes with CdCl2 enhanced generation of reactive oxygen and nitrogen species, decreased the antioxidant power and inhibited pathways of glucose metabolism. Plasma membrane was damaged as indicated by enhanced osmotic fragility and inhibition of membrane bound enzymes. This was confirmed by electron microscopy which showed formation of echinocytes. These results show that CdCl2 generates reactive species which impair the antioxidant system resulting in oxidative damage to erythrocytes.


Assuntos
Cloreto de Cádmio , Eritrócitos , Estresse Oxidativo , Humanos , Antioxidantes/metabolismo , Cloreto de Cádmio/toxicidade , Eritrócitos/efeitos dos fármacos , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121503, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35717929

RESUMO

Mancozeb is a broad-spectrum fungicide used extensively in agriculture to protect plants from numerous diseases. Hemolysis of human erythrocytes on exposure to mancozeb has been reported. In the present study, we investigated the interaction of mancozeb with human hemoglobin (Hb) using multi-spectroscopic techniques, molecular docking and molecular dynamic simulation. UV-visible spectroscopy studies suggested intimate binding of mancozeb to Hb. Mancozeb quenched the intrinsic fluorescence of Hb and Stern-Volmer plots revealed that the quenching mechanism was of static type. Evaluation of thermodynamic parameters indicated that the binding of Hb to mancozeb was spontaneous, with van der Waals forces and hydrogen bonding being the key contributors in the binding reaction. Synchronous fluorescence experiments demonstrated that mancozeb altered the microenvironment around tryptophan residues, whereas polarity around tyrosine residues was not changed. Circular dichroism studies showed a decrease in the α helical content of Hb upon interaction with mancozeb. The inhibition of esterase activity showed that mancozeb can impair the enzymatic functions of Hb. Molecular docking study revealed that strong binding affinity existed between mancozeb and Hb, with hydrophobic forces playing a crucial role in the interaction. Molecular dynamic simulation showed that mancozeb formed a stable complex with Hb resulting in slight unfolding of the protein. To sum up, the results of this study show that mancozeb binds strongly to Hb, induces conformational changes in Hb and adversely affects its function.


Assuntos
Hemoglobinas , Simulação de Dinâmica Molecular , Sítios de Ligação , Dicroísmo Circular , Hemoglobinas/química , Humanos , Maneb , Simulação de Acoplamento Molecular , Ligação Proteica , Espectrometria de Fluorescência/métodos , Termodinâmica , Zineb
6.
Sci Rep ; 11(1): 8300, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859309

RESUMO

Bioallethrin is a synthetic pesticide that is widely used to control insect pests. The wide use of bioallethrin has resulted in inevitable human exposure. In this study we report the effect of different concentrations of bioallethrin (10 to 200 µM, 2 h at 37 °C) on human lymphocytes under in vitro conditions. Bioallethrin treatment resulted in loss of cell viability (> 30% at 200 µM bioallethrin). Oxidative stress markers like lipid peroxidation and protein oxidation were significantly increased accompanied by lower ratio of reduced to oxidized glutathione. Enhanced ROS generation was observed through fluorescence spectroscopy and microscopy. Bioallethrin-induced oxidative stress also compromised the antioxidant defence as it reduced antioxidant capacity of cells and inhibited major antioxidant enzymes. Biomolecular modifications and systemic toxicity by bioallethrin resulted in plasma membrane damage with mitochondrial depolarization. Comet assay showed nuclear DNA fragmentation and strand scission with significant increase in tail length and olive tail moment. Apoptosis and necrosis of cells was confirmed through acridine orange/ethidium bromide dual staining and visualization under fluorescence microscope. Thus, bioallethrin causes oxidative damage and compromises the antioxidant system leading to DNA damage, cellular and organelle toxicity, resulting in apoptosis and necrosis of human lymphocytes.


Assuntos
Aletrinas/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Praguicidas/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fragmentação do DNA/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Linfócitos/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA