Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MedComm (2020) ; 5(5): e539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38680520

RESUMO

Urgent research into innovative severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccines that may successfully prevent various emerging emerged variants, particularly the Omicron variant and its subvariants, is necessary. Here, we designed a chimeric adenovirus-vectored vaccine named Ad5-Beta/Delta. This vaccine was created by incorporating the receptor-binding domain from the Delta variant, which has the L452R and T478K mutations, into the complete spike protein of the Beta variant. Both intramuscular (IM) and intranasal (IN) vaccination with Ad5-Beta/Deta vaccine induced robust broad-spectrum neutralization against Omicron BA.5-included variants. IN immunization with Ad5-Beta/Delta vaccine exhibited superior mucosal immunity, manifested by higher secretory IgA antibodies and more tissue-resident memory T cells (TRM) in respiratory tract. The combination of IM and IN delivery of the Ad5-Beta/Delta vaccine was capable of synergically eliciting stronger systemic and mucosal immune responses. Furthermore, the Ad5-Beta/Delta vaccination demonstrated more effective boosting implications after two dosages of mRNA or subunit recombinant protein vaccine, indicating its capacity for utilization as a booster shot in the heterologous vaccination. These outcomes quantified Ad5-Beta/Delta vaccine as a favorable vaccine can provide protective immunity versus SARS-CoV-2 pre-Omicron variants of concern and BA.5-included Omicron subvariants.

2.
Genes Dis ; 11(4): 101066, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38550714

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has decreased the efficacy of SARS-CoV-2 vaccines in containing coronavirus disease 2019 (COVID-19) over time, and booster vaccination strategies are urgently necessitated to achieve sufficient protection. Intranasal immunization can improve mucosal immunity, offering protection against the infection and sustaining the spread of SARS-CoV-2. In this study, an intranasal booster of the RBD-HR vaccine after two doses of the mRNA vaccine significantly increased the levels of specific binding antibodies in serum, nasal lavage fluid, and bronchoalveolar lavage fluid compared with only two doses of mRNA vaccine. After intranasal boosting with the RBD-HR vaccine, the levels of serum neutralizing antibodies against prototype and variant strains of SARS-CoV-2 pseudoviruses were markedly higher than those in mice receiving mRNA vaccine alone, and intranasal boosting with the RBD-HR vaccine also inhibited the binding of RBD to hACE2 receptors. Furthermore, the heterologous intranasal immunization regimen promoted extensive memory T cell responses and activated CD103+ dendritic cells in the respiratory mucosa, and potently enhanced the formation of T follicular helper cells and germinal center B cells in vital immune organs, including mediastinal lymph nodes, inguinal lymph nodes, and spleen. Collectively, these data infer that heterologous intranasal boosting with the RBD-HR vaccine elicited broad protective immunity against SARS-CoV-2 both locally and systemically.

4.
Signal Transduct Target Ther ; 7(1): 399, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566328

RESUMO

For coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 15-30% of patients are likely to develop COVID-19-related acute respiratory distress syndrome (ARDS). There are still few effective and well-understood therapies available. Novel variants and short-lasting immunity are posing challenges to vaccine efficacy, so finding antiviral and antiinflammatory treatments remains crucial. Here, tripterin (TP), a traditional Chinese medicine, was encapsulated into liposome (TP lipo) to investigate its antiviral and antiinflammatory effects in severe COVID-19. By using two severe COVID-19 models in human ACE2-transgenic (hACE2) mice, an analysis of TP lipo's effects on pulmonary immune responses was conducted. Pulmonary pathological alterations and viral burden were reduced by TP lipo treatment. TP lipo inhibits SARS-CoV-2 replication and hyperinflammation in infected cells and mice, two crucial events in severe COVID-19 pathophysiology, it is a promising drug candidate to treat SARS-CoV-2-induced ARDS.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Animais , Camundongos , SARS-CoV-2 , Lipossomos , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico
5.
Nat Commun ; 13(1): 5459, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115859

RESUMO

The recently emerged Omicron (B.1.1.529) variant has rapidly surpassed Delta to become the predominant circulating SARS-CoV-2 variant, given the higher transmissibility rate and immune escape ability, resulting in breakthrough infections in vaccinated individuals. A new generation of SARS-CoV-2 vaccines targeting the Omicron variant are urgently needed. Here, we developed a subunit vaccine named RBD-HR/trimer by directly linking the sequence of RBD derived from the Delta variant (containing L452R and T478K) and HR1 and HR2 in SARS-CoV-2 S2 subunit in a tandem manner, which can self-assemble into a trimer. In multiple animal models, vaccination of RBD-HR/trimer formulated with MF59-like oil-in-water adjuvant elicited sustained humoral immune response with high levels of broad-spectrum neutralizing antibodies against Omicron variants, also inducing a strong T cell immune response in vivo. In addition, our RBD-HR/trimer vaccine showed a strong boosting effect against Omicron variants after two doses of mRNA vaccines, featuring its capacity to be used in a prime-boost regimen. In mice and non-human primates, RBD-HR/trimer vaccination could confer a complete protection against live virus challenge of Omicron and Delta variants. The results qualified RBD-HR/trimer vaccine as a promising next-generation vaccine candidate for prevention of SARS-CoV-2, which deserved further evaluation in clinical trials.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Subunidades Proteicas , SARS-CoV-2 , Vacinas de Subunidades Antigênicas , Água
6.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188762, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853517

RESUMO

Neutrophils are the frontline cells in response to microbial infections and are involved in a range of inflammatory disorders in the body. In recent years, neutrophils have gained considerable attention in their involvement of complex roles in tumor development and progression. Tumor-associated neutrophils (TANs) that accumulate in local region could be triggered by external stimuli from tumor microenvironment (TME) and switch between anti- and pro-tumor phenotypes. The anti-tumor neutrophils kill tumor cells through direct cytotoxic effects as well as indirect effects by activating adaptive immune responses. In contrast, the pro-tumor phenotype of neutrophils might be associated with cell proliferation, angiogenesis, and immunosuppression in TME. More recently, neutrophils have been proposed as a potential target in cancer therapy for their ability to diminish the pro-tumor pathways, such as by immune checkpoint blockade. This review discusses the complex roles of neutrophils in TME and highlights the strategies in neutrophil targeting in cancer treatment with a particular focus on the progresses of ongoing clinical trials involving neutrophil-targeted therapies.


Assuntos
Neoplasias , Neutrófilos , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias/patologia , Neovascularização Patológica/patologia , Microambiente Tumoral
7.
Pharmaceutics ; 14(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35890268

RESUMO

The lymphatic system plays an indispensable role in humoral balance, lipid metabolism, and immune regulation. The lymph nodes (LNs) are known as the primary sites of tumor metastasis and the metastatic LNs largely affected the prognosis of the patiens. A well-designed lymphatic-targeted system favors disease treatment as well as vaccination efficacy. In recent years, development of nanotechnologies and emerging biomaterials have gained increasing attention in developing lymph-node-targeted drug-delivery systems. By mimicking the endogenous macromolecules or lipid conjugates, lymph-node-targeted nanocarries hold potential for disease diagnosis and tumor therapy. This review gives an introduction to the physiological functions of LNs and the roles of LNs in diseases, followed by a review of typical lymph-node-targeted nanomaterial-based drug-delivery systems (e.g., liposomes, micelles, inorganic nanomaterials, hydrogel, and nanocapsules). Future perspectives and conclusions concerned with lymph-node-targeted drug-delivery systems are also provided.

8.
Cell Mol Immunol ; 19(5): 577-587, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35273357

RESUMO

Neutrophil extracellular traps (NETs) can capture and kill viruses, such as influenza viruses, human immunodeficiency virus (HIV), and respiratory syncytial virus (RSV), thus contributing to host defense. Contrary to our expectation, we show here that the histones released by NETosis enhance the infectivity of SARS-CoV-2, as found by using live SARS-CoV-2 and two pseudovirus systems as well as a mouse model. The histone H3 or H4 selectively binds to subunit 2 of the spike (S) protein, as shown by a biochemical binding assay, surface plasmon resonance and binding energy calculation as well as the construction of a mutant S protein by replacing four acidic amino acids. Sialic acid on the host cell surface is the key molecule to which histones bridge subunit 2 of the S protein. Moreover, histones enhance cell-cell fusion. Finally, treatment with an inhibitor of NETosis, histone H3 or H4, or sialic acid notably affected the levels of sgRNA copies and the number of apoptotic cells in a mouse model. These findings suggest that SARS-CoV-2 could hijack histones from neutrophil NETosis to promote its host cell attachment and entry process and may be important in exploring pathogenesis and possible strategies to develop new effective therapies for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Histonas , Camundongos , Ácido N-Acetilneuramínico , Subunidades Proteicas/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus
9.
Mol Cancer ; 21(1): 71, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277177

RESUMO

Cancer is a severe disease that substantially jeopardizes global health. Although considerable efforts have been made to discover effective anti-cancer therapeutics, the cancer incidence and mortality are still growing. The personalized anti-cancer therapies present themselves as a promising solution for the dilemma because they could precisely destroy or fix the cancer targets based on the comprehensive genomic analyses. In addition, genome editing is an ideal way to implement personalized anti-cancer therapy because it allows the direct modification of pro-tumor genes as well as the generation of personalized anti-tumor immune cells. Furthermore, non-viral delivery system could effectively transport genome editing tools (GETs) into the cell nucleus with an appreciable safety profile. In this manuscript, the important attributes and recent progress of GETs will be discussed. Besides, the laboratory and clinical investigations that seek for the possibility of combining non-viral delivery systems with GETs for the treatment of cancer will be assessed in the scope of personalized therapy.


Assuntos
Edição de Genes , Neoplasias , Sistemas CRISPR-Cas , Genes Neoplásicos , Terapia Genética , Humanos , Neoplasias/genética , Neoplasias/terapia
10.
Signal Transduct Target Ther ; 6(1): 439, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952899

RESUMO

The development of animal models for COVID-19 is essential for basic research and drug/vaccine screening. Previously reported COVID-19 animal models need to be established under a high biosafety level condition for the utilization of live SARS-CoV-2, which greatly limits its application in routine research. Here, we generate a mouse model of COVID-19 under a general laboratory condition that captures multiple characteristics of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) observed in humans. Briefly, human ACE2-transgenic (hACE2) mice were intratracheally instilled with the formaldehyde-inactivated SARS-CoV-2, resulting in a rapid weight loss and detrimental changes in lung structure and function. The pulmonary pathologic changes were characterized by diffuse alveolar damage with pulmonary consolidation, hemorrhage, necrotic debris, and hyaline membrane formation. The production of fatal cytokines (IL-1ß, TNF-α, and IL-6) and the infiltration of activated neutrophils, inflammatory monocyte-macrophages, and T cells in the lung were also determined, suggesting the activation of an adaptive immune response. Therapeutic strategies, such as dexamethasone or passive antibody therapy, could effectively ameliorate the disease progression in this model. Therefore, the established mouse model for SARS-CoV-2-induced ARDS in the current study may provide a robust tool for researchers in the standard open laboratory to investigate the pathological mechanisms or develop new therapeutic strategies for COVID-19 and ARDS.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Pulmão/imunologia , Síndrome do Desconforto Respiratório/imunologia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Síndrome do Desconforto Respiratório/genética
11.
Signal Transduct Target Ther ; 6(1): 406, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815399

RESUMO

Currently, SARS-CoV-2 has caused a global pandemic and threatened many lives. Although SARS-CoV-2 mainly causes respiratory diseases, growing data indicate that SARS-CoV-2 can also invade the central nervous system (CNS) and peripheral nervous system (PNS) causing multiple neurological diseases, such as encephalitis, encephalopathy, Guillain-Barré syndrome, meningitis, and skeletal muscular symptoms. Despite the increasing incidences of clinical neurological complications of SARS-CoV-2, the precise neuroinvasion mechanisms of SARS-CoV-2 have not been fully established. In this review, we primarily describe the clinical neurological complications associated with SARS-CoV-2 and discuss the potential mechanisms through which SARS-CoV-2 invades the brain based on the current evidence. Finally, we summarize the experimental models were used to study SARS-CoV-2 neuroinvasion. These data form the basis for studies on the significance of SARS-CoV-2 infection in the brain.


Assuntos
Encéfalo , COVID-19 , Doenças do Sistema Nervoso , SARS-CoV-2/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , COVID-19/complicações , COVID-19/metabolismo , COVID-19/patologia , Humanos , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/virologia
12.
Nano Lett ; 21(19): 7960-7969, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34533963

RESUMO

Toll-like receptor (TLR) agonists as the potent stimulants of an innate immune system hold promises for applications in anticancer immunotherapy. However, most of them are limited in the clinical translation due to the uncontrolled systemic inflammatory response. In the current study, 1V209, a small molecule TLR7 agonist, was conjugated with cholesterol (1V209-Cho) and prepared into liposomes (1V209-Cho-Lip). 1V209-Cho-Lip exerted minimal toxic effects and enhanced the transportation ability in lymph nodes (LNs) compared with 1V209. 1V209-Cho-Lip treatment inhibited tumor progression in CT26 colorectal cancer, 4T1 breast cancer, and Pan02 pancreatic ductal cancer models through inducing effective DC activation and eliciting CD8+ T cell responses. Furthermore, 1V209-Cho-Lip induced tumor-specific memory immunity to inhibit cancer recurrence and metastasis. These results indicate that cholesterol conjugation with 1V209 is an effective approach to target lymph nodes and to reduce the adverse effects. This work provides a rational basis for the distribution optimization of TLR agonists for potential clinical use.


Assuntos
Lipossomos , Receptor 7 Toll-Like , Adenina/análogos & derivados , Adjuvantes Imunológicos/farmacologia , Animais , Linfonodos , Camundongos , Camundongos Endogâmicos C57BL
13.
ACS Sens ; 5(2): 557-562, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32013399

RESUMO

A rapid and sensitive isothermal method is crucial for point-of-care (POC) nucleic acid testing. Recently, RNA-guided CRISPR/Cas12a proteins were discovered to exhibit target-triggered nonspecific single-stranded deoxyribonuclease (ssDNase) activity. Herein, the ssDNase cleavage capacity of the CRISPR/Cas12a system for interfacial hairpin DNA (hpDNA) and linear DNA was investigated in detailed. A novel electrochemical DNA biosensor was then developed via target-induced Cas12a cleaving interfacial hpDNA. In this strategy, the RNA-guided target DNA binding activates the robust Cas12a ssDNase activity. The immobilized hpDNA electrochemical reporters with a low surface coverage and incompact morphological structure present accessible substrates for highly efficient Cas12a cleavage, leading to a highly sensitive electrochemical DNA biosensor. Under the optimal conditions, as low as 30 pM target DNA was detected in about 60 min with 3.5 orders of magnitude dynamic range from 50 pM to 100 nM. Furthermore, the practical application ability of the established sensing method for detecting the target in complex matrices was also demonstrated. The proposed strategy enables rapid and sensitive DNA determination, providing a potential tool for POC molecular diagnostics.


Assuntos
Sistemas CRISPR-Cas/genética , DNA/química , Eletroquímica/métodos , Ácidos Nucleicos/química , Humanos
14.
Biosens Bioelectron ; 150: 111954, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31929087

RESUMO

A novel electrochemical biosensor was constructed for specific and ultrasensitive detection of PIK3CAH1047R gene mutation based on NsbI restriction enzyme-mediated strand displacement amplification (NsbI-SDA) and four-way DNA junction for the first time. In this biosensor, the NsbI restriction enzyme combined with strand displacement amplification (SDA) was able to specifically distinguish PIK3CAH1047R gene mutation and increase the number of DNA copies to improve electrochemical response. In the presence of target mutation gene, DNA fragments produced by the cleavage event of NsbI restriction enzyme could trigger the SDA reaction to generate massive linker chains. When the linker chains were captured on the electrode, the four-way DNA junction was then attached at the end of linker chain. By integrating electroactive molecules of methylene blue (MB) into four-way DNA junction, this sandwich-like electrochemical biosensor was able to determine the specific distinction of target mutation gene with a low detection limit of 0.001%. Finally, this strategy could be used to analyze mutation gene spiked into human serum samples, indicating the potential application in genetic analysis and clinical disease diagnosis.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , DNA/genética , Mutação Puntual , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos
15.
Biosens Bioelectron ; 143: 111610, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445386

RESUMO

A label-free and efficient electrochemical biosensor was developed for the ultrasensitive detection of EBV-related DNA by combing AgDNCs@DNA/AgNCs nanocomposites with noncanonical lambda exonuclease (λ exo)-assisted target recycling (LNTR). The conjugates of AgDNCs, DNA/AgNCs and probe DNA (pDNA-AgDNCs@DNA/AgNCs conjugates) worked as not only ideal nanocarriers but also efficient electrochemical tags. LNTR didn't require phosphorylated substrates and could be triggered specifically by target DNA, leading to the recycling use of target DNA and the liberation of plentiful linker probes (LP). Subsequently, the LP hybridized with the capture probes on the electrode and then bond to pDNA-AgDNCs@DNA/AgNCs conjugates, generating a sensitive electric signal directly. What's more, the signal amplification effects of DNA/AgNCs and LNTR were investigated. Under the optimal conditions, the proposed method exhibited a wide linear range of 1 fM to 1 nM and the detection limit down to 0.38 fM. In addition, the developed biosensing method exhibited excellent specificity and was successfully applied to detect target DNA in complex biological matrix. The proposed biosensor without extra bio-labels may provide a promising platform in bioanalysis and biochemical research.


Assuntos
Técnicas Biossensoriais , DNA Viral/isolamento & purificação , Técnicas Eletroquímicas , Herpesvirus Humano 4/isolamento & purificação , DNA Viral/química , Exonucleases/química , Herpesvirus Humano 4/química , Humanos , Nanocompostos/química
16.
RSC Adv ; 9(34): 19347-19353, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35519381

RESUMO

Nucleic acid analysis plays an important role in the diagnosis of diseases. There is a continuous demand to develop rapid and sensitive methods for the specific detection of nucleic acids. Herein, we constructed a highly sensitive and rapid fluorescent biosensor for the detection of BRCA1 by coupling a 3D DNA walker machine with spontaneous entropy-driven strand displacement reactions (ESDRs). In this study, the 3D DNA walker machine was well activated by the target DNA; this resulted in the cyclic utilization of the target DNA and the release of intermediate DNAs. Subsequently, the free intermediate DNAs triggered the circulation process of ESDRs with the help of the assistant probe A, leading to a significant enhancement of the fluorescence intensity. Due to the robust execution of the 3D DNA walker machine and highly efficient amplification capability of ESDRs, the developed biosensing method shows a wide linear range from 0.1 pM to 10 nM with the detection limit as low as 41.44 fM (S/N = 3). Moreover, the constructed biosensor displays superior specificity and has been applied to monitor BRCA1 in complex matrices. Thus, this elaborated cascade amplification biosensing strategy provides a potential platform for the bioassays of nucleic acids and the clinical diagnosis of diseases.

17.
RSC Adv ; 8(55): 31710-31716, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35548230

RESUMO

Sensitive and specific detection of HIV-related DNA is of great importance for early accurate diagnosis and therapy of HIV-infected patients. Here, we developed a one-step and rapid fluorescence strategy for HIV-related DNA detection based on strand displacement amplification and a Mg2+-dependent DNAzyme reaction. In the presence of target HIV DNA, it can hybridize with template DNA and activate strand displacement amplification to generate numerous DNAzyme sequences. With the introduction of Mg2+, DNAzyme can be activated to circularly cleave the substrate DNA, which leads to the separation of fluorophore reporters from the quenchers, resulting in the recovery of the fluorescence. Under the optimal experimental conditions, the established biosensing method can detect target DNA down to 61 fM with a linear range from 100 fM to 1 nM, and discriminate target DNA from mismatched DNA perfectly. In addition, the developed biosensing strategy was successfully applied to assay target DNA spiked into human serum samples. With the advantages of fast, easy operation and high-performance, this biosensing strategy might be an alternative tool for clinical diagnosis of HIV infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA