Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38993132

RESUMO

Endothelial dysfunction (ED) serves as the pathological basis for various cardiovascular diseases. Guanosine triphosphate cyclopyrrolone 1 (GCH1) emerges as a pivotal protein in sustaining nitric oxide (NO) production within endothelial cells, yet it undergoes degradation under oxidative stress, contributing to endothelial cell dysfunction. Citronellal (CT), a monoterpenoid, has been shown to ameliorate endothelial dysfunction induced by in atherosclerosis rats. However, whether CT can inhibit the degradation of GCH1 protein is not clear. It has been reported that ubiquitination may play a crucial role in regulating GCH1 protein levels and activities. However, the specific E3 ligase for GCH1 and the molecular mechanism of GCH1 ubiquitination remains unclear. Using data-base exploration analysis, we find that the levels of the E3 ligase Smad-ubiquitination regulatory factor 2 (Smurf2) negatively correlate with those of GCH1 in vascular tissues and HUVECs. We observe that Smurf2 interacts with GCH1 and promotes its degradation via the proteasome pathway. Interestingly, ectopic Smurf2 expression not only decreases GCH1 levels but also reduces cell proliferation and reactive oxygen species (ROS) levels, mostly because of increased GCH1 accumulation. Furthermore, we identify BH 4/eNOS as downstream of GCH1. Taken together, our results indicate that CT can obviously improve vascular endothelial injury in Type 1 diabetes mellitus (T1DM) rats and reverse the expressions of GCH1 and Smurf2 proteins in aorta of T1DM rats. Smurf2 promotes ubiquitination and degradation of GCH1 through proteasome pathway in HUVECs. We conclude that the Smurf2-GCH1 interaction might represent a potential target for improving endothelial injury.

2.
Phytomedicine ; 128: 155557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547622

RESUMO

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.


Assuntos
Proteínas Quinases Ativadas por AMP , Antraquinonas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Endoteliais da Veia Umbilical Humana , Óxido Nítrico Sintase Tipo III , Transdução de Sinais , Trombospondina 1 , Animais , Humanos , Antraquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Trombospondina 1/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Masculino , Ratos , Camundongos , Ratos Sprague-Dawley , Endotélio Vascular/efeitos dos fármacos , Glucose/metabolismo , Camundongos Endogâmicos C57BL
3.
Int Immunopharmacol ; 113(Pt A): 109274, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252472

RESUMO

Doxorubicin (DOX), a broad-spectrum anti-tumor drug, has severe cardiotoxic side effects that limit its clinical application. Perillaldehyde (PAE) is the main component of volatile oil extracted from the stems and leaves of Herbaceous plant-perilla, which demonstrates antioxidant, anti-inflammatory, hypolipidemic, and other health functions. The present study aimed to explore the protective effect of perillaldehyde on DOX-induced cardiotoxicity in rats and to confirm its possible mechanism. The results showed that PAE could significantly improve cardiac function, alleviate myocardial fibrosis, and attenuate oxidative stress and inflammatory responses in DOX-induced cardiotoxicity in rats. Mechanistically, PAE could DOX-induced cardiotoxicity, which is related to its regulation of the PI3K/Akt signaling pathway and inhibition of NHE1 phosphorylation. Therefore, the finding demonstrates that perillaldehyde may be a promising cardioprotective agent for the prevention and treatment of cardiotoxicity caused by DOX.


Assuntos
Cardiotoxicidade , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Cardiotoxicidade/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Apoptose , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA