Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 4(11): 2217-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25360262

RESUMO

Nutrient resorption from senescing photosynthetic organs is a powerful mechanism for conserving nitrogen (N) and phosphorus (P) in infertile environments. Evolution has resulted in enhanced differentiation of conducting tissues to facilitate transport of photosynthate to other plant parts, ultimately leading to phloem. Such tissues may also serve to translocate N and P to other plant parts upon their senescence. Therefore, we hypothesize that nutrient resorption efficiency (RE, % of nutrient pool exported) should correspond with the degree of specialization of these conducting tissues across the autotrophic branches of the Tree of Life. To test this hypothesis, we had to compare members of different plant clades and lichens within a climatic region, to minimize confounding effects of climatic drivers on nutrient resorption. Thus, we compared RE among wide-ranging basal clades from the principally N-limited subarctic region, employing a novel method to correct for mass loss during senescence. Even with the limited numbers of species available for certain clades in this region, we found some consistent patterns. Mosses, lichens, and lycophytes generally showed low REN (<20%), liverworts and conifers intermediate (40%) and monilophytes, eudicots, and monocots high (>70%). REP appeared higher in eudicots and liverworts than in mosses. Within mosses, taxa with more efficient conductance also showed higher REN. The differences in REN among clades broadly matched the degree of specialization of conducting tissues. This novel mapping of a physiological process onto the Tree of Life broadly supports the idea that the evolution of conducting tissues toward specialized phloem has aided land plants to optimize their internal nitrogen recycling. The generality of evolutionary lines in conducting tissues and nutrient resorption efficiency needs to be tested across different floras in different climatic regions with different levels of N versus P availability.

2.
Ecol Lett ; 11(10): 1065-71, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18627410

RESUMO

Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.


Assuntos
Biodiversidade , Folhas de Planta/metabolismo , Plantas/genética , Biodegradação Ambiental , Biomassa , Carbono/química , Clima , Filogenia , Desenvolvimento Vegetal , Folhas de Planta/genética , Plantas/metabolismo , Especificidade da Espécie
3.
Ecol Lett ; 10(7): 619-27, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17542940

RESUMO

Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.


Assuntos
Clima Frio , Ecossistema , Efeito Estufa , Modelos Biológicos , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Análise de Variância , Carbono/química , Plantas/metabolismo , Especificidade da Espécie , Suécia
4.
Oecologia ; 135(4): 606-14, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12684861

RESUMO

Hemiparasitic angiosperms concentrate nutrients in their leaves and also produce high quality litter, which can decompose faster and release more nutrients than that of surrounding species. The impact of these litters on plant growth may be particularly important in nutrient-poor communities where hemiparisites can be abundant, such as the sub-Arctic. We tested the hypothesis that plant growth is enhanced by the litter of the hemiparasite Bartsia alpina, in comparison with litter of co-occurring dwarf shrub species, using a pot based bioassay approach. Growth of Betula nana and Poa alpina was up to 51% and 41% greater, respectively, in the presence of Bartsia alpina litter than when grown with dwarf shrub litter (Vaccinium uliginosum, Betula nana and Empetrum nigrum subsp. hermaphroditum). The nutrient concentrations of Betula nana plants grown with Bartsia alpina litter were almost double those of plants grown with dwarf shrub litter, and a significantly greater proportion of biomass was allocated to shoots rather than roots, strongly suggesting that nutrient availability was higher where Bartsia alpina litter was present. The presence of litter from dwarf shrubs, or the moss Hylocomium splendens, did not reduce the positive effect of Bartsia alpina litter on plant growth. E. nigrum litter did not appear to affect plant growth substantially differently from litter of other dwarf shrub species, despite earlier reports of its allelopathic action. The enhanced nutrient uptake and growth of plants in the presence of Bartsia alpina (and potentially other hemiparasitic species) litter could have important implications for communities in which it occurs, including enhanced survival of seedlings of co-occurring species and increased resource patchiness.


Assuntos
Betula/crescimento & desenvolvimento , Ecossistema , Orobanchaceae , Folhas de Planta/química , Poa/crescimento & desenvolvimento , Análise de Variância , Animais , Betula/química , Biomassa , Carbono/análise , Lignina/análise , Nitrogênio/análise , Fósforo/análise , Solo/análise , Suécia , Temperatura
5.
Oecologia ; 130(1): 88-95, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28547029

RESUMO

We investigated the hypothesis that hemiparasites accelerate nutrient cycling in nutrient-poor communities. Hemiparasites concentrate nutrients in their leaves, thus potentially producing high quality litter that releases nutrients that would otherwise remain in host tissues or in slowly decomposing plant litter. This hypothesis was tested using species from a European sub-arctic community where root hemiparasites are abundant. The N content of green leaves, and the N, P and C content of leaf litter were measured in seven species of root hemiparasitic Scrophulariaceae, and nine species of commonly co-occurring dwarf shrubs, graminoids and herbs. Fresh leaves of the hemiparasites had greater N concentrations than leaves of dwarf shrubs, graminoids or herbs. This difference was even more marked in litter, with hemiparasite litter containing 1.8-4.1% N, between 1.8 and 8.5 times as much N as in the litter of commonly co-occurring species. Litter of the hemiparasitic plant Bartsia alpina and of three commonly co-occurring dominant species of dwarf shrub was decomposed alone and in two species mixtures, in a laboratory microcosm experiment. Bartsia litter decomposed faster and lost between 5.4 and 10.8 times more N than that of the dwarf shrubs over the 240 days of the experiment. Mixtures of dwarf shrub and hemiparasite litter showed significantly more mass loss and CO2 release than expected, while nutrient release was the same as or less than expected. It is concluded that hemiparasites have the potential to enhance decomposition and nutrient cycling in nutrient-poor environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA