Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511390

RESUMO

New antitubercular agents with either a novel mode of action or novel mode of inhibition are urgently needed to overcome the threat of drug-resistant tuberculosis (TB). The present study profiles new arylated quinoline carboxylic acids (QCAs) having activity against replicating and non-replicating Mycobacterium tuberculosis (Mtb), the causative agent of TB. Thus, the synthesis, characterization, and in vitro screening (MABA and LORA) of 48 QCAs modified with alkyl, aryl, alkoxy, halogens, and nitro groups in the quinoline ring led to the discovery of two QCA derivatives, 7i and 7m, adorned with C-2 2-(naphthalen-2-yl)/C-6 1-butyl and C-2 22-(phenanthren-3-yl)/C-6 isopropyl, respectively, as the best Mtb inhibitors. DNA gyrase inhibition was shown to be exhibited by both, with QCA 7m illustrating better activity up to a 1 µM test concentration. Finally, a docking model for both compounds with Mtb DNA gyrase was developed, and it showed a good correlation with in vitro results.


Assuntos
Mycobacterium tuberculosis , Quinolinas , Mycobacterium tuberculosis/metabolismo , DNA Girase/metabolismo , Ácidos Carboxílicos/farmacologia , Relação Estrutura-Atividade , Antituberculosos/farmacologia , Quinolinas/farmacologia , Testes de Sensibilidade Microbiana , Inibidores da Topoisomerase II/farmacologia
2.
ACS Omega ; 8(6): 5377-5392, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816691

RESUMO

Pathologic hyperreactive inflammatory responses occur when there is excessive activation of a proinflammatory NF-κB pathway and a reduced cytoprotective NRF2 cascade. The noncytotoxic, highly selective COX-2 inhibitory flavonol-enriched butanol fraction (UaB) from Uvaria alba (U. alba) was investigated for its inflammatory modulating potential by targeting NF-κB activation and NRF2 activity. Enzyme-linked immunosorbent assay was initially performed to measure levels of proinflammatory mediators [nitric oxide (NO), prostaglandin E2, and reactive oxygen species (ROS)] and cytokines [tumor necrosis factor-alpha (TNF-α), IL-1ß, and IL-6], followed by reverse transcription-polymerase chain reaction and western blotting to determine mRNA and protein expression, respectively. Using immunofluorescence staining combined with western blot analysis, the activation of NF-κB was further investigated. NRF2 activity was also measured using a luciferase reporter assay. UaB abrogated protein and mRNA expressions of inducible nitric oxide synthase (iNOS), COX-2, TNF-α, IL-1ß, and IL-6 in RAW 264.7 macrophages, thereby suppressing the production of proinflammatory mediators and cytokines. This was further validated when a concentration-dependent decrease in NO and ROS production was observed in zebrafish (Danio rerio) larvae. UaB also increased NRF2 activity in HaCaT/ARE cell line and attenuated NF-κB activation by inhibiting the nuclear translocation of transcription factor p65 in RAW 264.7 macrophages. Nontargeted LC-MS analysis of UaB revealed the presence of the flavonols quercitrin (1), quercetin (2), rutin (3), kaempferol (4), and kaempferol 3-O-rutinoside (5). Molecular docking indicates that major flavonol aglycones have high affinity toward COX-2 NSAID-binding sites, TNF-α, and TNF-α converting enzyme, while the glycosylated flavonoids showed strong binding toward iNOS and IKK-all possessing dynamic stability when performing molecular dynamics simulations at 140 ns. This is the first report to have elucidated the mechanistic anti-inflammatory potential of the Philippine endemic plant U. alba.

3.
Comb Chem High Throughput Screen ; 26(3): 459-488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34533442

RESUMO

The ongoing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has been proven to be more severe than the previous coronavirus outbreaks due to the virus' high transmissibility. With the emergence of new variants, this global phenomenon took a more dramatic turn, with many countries recently experiencing higher surges of confirmed cases and deaths. On top of this, the inadequacy of effective treatment options for COVID-19 aggravated the problem. As a way to address the unavailability of target-specific viral therapeutics, computational strategies have been employed to hasten and systematize the search. The objective of this review is to provide initial data highlighting the utility of polyphenols as potential prophylaxis or treatment for COVID-19. In particular, presented here are virtually screened polyphenolic compounds which showed potential as either antagonists to viral entry and host cell recognition through binding with various receptor-binding regions of SARS-CoV-2 spike protein or as inhibitors of viral replication and post-translational modifications through binding with essential SARS-CoV-2 non-structural proteins.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
4.
ACS Omega ; 7(41): 36856-36864, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278100

RESUMO

Shikimic acid-derived polyoxygenated cyclohexene natural products commonly occurring in several species of the Uvaria represent natural products with promising biological activities. While a number of derivatives have been reported from Uvaria grandiflora (U. grandiflora), further studies are needed to discover additional bioactive congeners, particularly derivatives with multi-protein target inhibitory properties implicated in diseases such as diabetes and obesity. In this paper, isolation and identification of a new highly oxygenated cyclohexene, uvagrandol (1), along with the known compound (-)-zeylenone (2) from the DCM sub-extract of U. grandiflora following in vitro and in silico assessment of their enzyme inhibitory properties against α-glucosidase, dipeptidyl peptidase IV, porcine lipase, and human recombinant monoacylglycerol lipase are reported. The structure of 1 was elucidated using 1D and 2D NMR data analysis. The absolute configuration of 1 was established by quantum chemical calculations via the Gauge-Independent Atomic Orbital (GIAO) NMR method followed by TDDFT-Electronic Circular Dichroism (ECD) calculations. The structures of the eight possible stereoisomers were optimized by means of DFT calculations (B3LYP/6-31+G[d,p] in vacuum), and then their isotropic shielding tensors were obtained using the GIAO method at mPW1PW91/6-31G(d,p) in chloroform. Through DP4+, the isomer of configuration (1S,2S,3R,6R) for 1 was predicted with 96.3% probability. Compounds 1 and 2 significantly inhibited the four target enzymes in vitro. Binding studies through molecular docking simulations showed strong binding affinities for (-)-zeylenone (2), thus validating the in vitro results. Our findings suggest the potential of polyoxygenated cyclohexenes, in particular (-)-zeylenone (2), in anti-diabetic and anti-obesity drug discovery.

5.
J Fungi (Basel) ; 8(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35736043

RESUMO

Laying the groundwork on preliminary structure-activity relationship study relating to the disruptive activity of cytochalasan derivatives on mammalian cell actin cytoskeleton, we furthered our study on the cytochalasans of the Dothideomycetes fungus, Sparticola triseptata. A new cytochalasan analog triseptatin (1), along with the previously described cytochalasans deoxaphomin B (2) and cytochalasin B (3), and polyketide derivatives cis-4-hydroxy-6-deoxyscytalone (4) and 6-hydroxymellein (5) were isolated from the rice culture of S. triseptata. The structure of 1 was elucidated through NMR spectroscopic analysis and high-resolution mass spectrometry (HR-ESI-MS). The relative and absolute configurations were established through analysis of NOESY spectroscopic data and later correlated with experimental electronic circular dichroism and time-dependent density functional theory (ECD-TDDFT) computational analysis. Compounds 1 and 2 showed cytotoxic activities against seven mammalian cell lines (L929, KB3.1, MCF-7, A549, PC-3, SKOV-3, and A431) and antiproliferative effects against the myeloid leukemia K-562 cancer cell line. Both 1 and 2 were shown to possess properties inhibiting the F-actin network, prompting further hypotheses that should to be tested in the future to enable a well-resolved concept of the structural implications determining the bioactivity of the cytochalasin backbone against F-actin.

6.
J Biomol Struct Dyn ; 40(22): 12209-12220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34463219

RESUMO

The severity of the COVID-19 pandemic has necessitated the search for drugs against SARS-CoV-2. In this study, we explored via in silico approaches myxobacterial secondary metabolites against various receptor-binding regions of SARS-CoV-2 spike which are responsible in recognition and attachment to host cell receptors mechanisms, namely ACE2, GRP78, and NRP1. In general, cyclic depsipeptide chondramides conferred high affinities toward the spike RBD, showing strong binding to the known viral hot spots Arg403, Gln493 and Gln498 and better selectivity compared to most host cell receptors studied. Among them, chondramide C3 (1) exhibited a binding energy which remained relatively constant when docked against most of the spike variants. Chondramide C (2) on the other hand exhibited strong affinity against spike variants identified in the United Kingdom (N501Y), South Africa (N501Y, E484K, K417N) and Brazil (N501Y, E484K, K417T). Chondramide C6 (9) showed highest BE towards GRP78 RBD. Molecular dynamics simulations were also performed for chondramides 1 and 2 against SARS-CoV-2 spike RBD of the Wuhan wild-type and the South African variant, respectively, where resulting complexes demonstrated dynamic stability within a 120-ns simulation time. Protein-protein binding experiments using HADDOCK illustrated weaker binding affinity for complexed chondramide ligands in the RBD against the studied host cell receptors. The chondramide derivatives in general possessed favorable pharmacokinetic properties, highlighting their potential as prototypic anti-COVID-19 drugs limiting viral attachment and possibly minimizing viral infection.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Depsipeptídeos , Humanos , SARS-CoV-2 , Chaperona BiP do Retículo Endoplasmático , Pandemias , Glicoproteína da Espícula de Coronavírus , Depsipeptídeos/farmacologia , Simulação de Dinâmica Molecular , Ligação Proteica
7.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830260

RESUMO

Axenic fermentation on solid rice of the saprobic fungus Sparticola junci afforded two new highly oxidized naphthalenoid polyketide derivatives, sparticatechol A (1) and sparticolin H (2) along with sparticolin A (3). The structures of 1 and 2 were elucidated on the basis of their NMR and HR-ESIMS spectroscopic data. Assignment of absolute configurations was performed using electronic circular dichroism (ECD) experiments and Time-Dependent Density Functional Theory (TDDFT) calculations. Compounds 1-3 were evaluated for COX inhibitory, antiproliferative, cytotoxic and antimicrobial activities. Compounds 1 and 2 exhibited strong inhibitory activities against COX-1 and COX-2. Molecular docking analysis of 1 conferred favorable binding against COX-2. Sparticolin H (2) and A (3) showed a moderate antiproliferative effect against myelogenous leukemia K-562 cells and weak cytotoxicity against HeLa and mouse fibroblast cells.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Ascomicetos/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Fibroblastos/efeitos dos fármacos , Policetídeos/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Cultura Axênica/métodos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular/métodos , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/isolamento & purificação , Fermentação , Fibroblastos/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular/métodos , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação
8.
ACS Omega ; 6(38): 24382-24396, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604621

RESUMO

The phenolic natural product magnolol exhibits neuroprotective properties through ß-amyloid toxicity in PC-12 cells and ameliorative effects against cognitive deficits in a TgCRND8 transgenic mice model. Its bioavailability and blood-brain barrier crossing ability have been significantly improved using the metal-organic framework (MOF) UiO-66(Zr) as a drug delivery system (DDS). To investigate the neuroprotective effects of the Zr-based DDS, magnolol and magnolol-loaded-UiO-66(Zr) (Mag@UiO-66(Zr)) were evaluated for inhibitory activity against ß-secretase and AlCl3-induced neurotoxicity. Due to the moderate inhibition observed for magnolol in vitro, in silico binding studies were explored against ß-secretase along with 11 enzymes known to affect Alzheimer's disease (AD). Favorable binding energies against CDK2, CKD5, MARK, and phosphodiesterase 3B (PDE3B) and dynamically stable complexes were noted through molecular docking and molecular dynamic simulation experiments, respectively. The magnolol-loaded DDS UiO-66(Zr) also showed enhanced neuroprotective activity against two pathological indices, namely, neutrophil infiltration and apoptotic neurons, in addition to damage reversal compared to magnolol. Thus, MOFs are promising drug delivery platforms for poorly bioavailable drugs.

9.
J Genet Eng Biotechnol ; 19(1): 104, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272647

RESUMO

BACKGROUND: Accessing COVID-19 vaccines is a challenge despite successful clinical trials. This burdens the COVID-19 treatment gap, thereby requiring accelerated discovery of anti-SARS-CoV-2 agents. This study explored the potential of anti-HIV reverse transcriptase (RT) phytochemicals as inhibitors of SARS-CoV-2 non-structural proteins (nsps) by targeting in silico key sites in the structures of SARS-CoV-2 nsps. One hundred four anti-HIV phytochemicals were subjected to molecular docking with nsp3, 5, 10, 12, 13, 15, and 16. Top compounds in complex with the nsps were investigated further through molecular dynamics. The drug-likeness and ADME (absorption, distribution, metabolism, and excretion) properties of the top compounds were also predicted using SwissADME. Their toxicity was likewise determined using OSIRIS Property Explorer. RESULTS: Among the top-scoring compounds, the polyphenolic functionalized natural products comprised of biflavones 1, 4, 11, 13, 14, 15; ellagitannin 9; and bisisoquinoline alkaloid 19 were multi-targeting and exhibited strongest binding affinities to at least two nsps (binding energy = - 7.7 to - 10.8 kcal/mol). The top ligands were stable in complex with their target nsps as determined by molecular dynamics. Several top-binding compounds were computationally druggable, showed good gastrointestinal absorptive property, and were also predicted to be non-toxic. CONCLUSIONS: Twenty anti-HIV RT phytochemicals showed multi-targeting inhibitory potential against SARS-CoV-2 non-structural proteins 3, 5, 10, 12, 13, 15, and 16. Our results highlight the importance of polyhydroxylated aromatic substructures for effective attachment in the binding/catalytic sites of nsps involved in post-translational mechanism pathways. As such with the nsps playing vital roles in viral pathogenesis, our findings provide inspiration for the design and discovery of novel anti-COVID-19 drug prototypes.

10.
J Nat Prod ; 84(7): 2053-2058, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34197704

RESUMO

Sparticols A (1) and B (2), two catechol-bearing naphthalenedioxy derivatives, were isolated from the submerged culture of the Spanish broom inhabiting Dothideomycetes fungus, Sparticola junci. The structures of 1 and 2 were established by NMR spectroscopic analysis and high-resolution mass spectrometry. The 8S absolute configuration of their ß-hydroxy functionalities was determined by ECD-TDDFT. Both compounds exhibited inhibitory activity against Staphylococcus aureus with an MIC value of 66.6 µg/mL. Polyketides 1 and/or 2 may be associated with pathways cascading to seco-spirodioxynapthalene derivatives.


Assuntos
Antibacterianos/farmacologia , Ascomicetos/química , Catecóis/farmacologia , Policetídeos/farmacologia , Antibacterianos/isolamento & purificação , Catecóis/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Policetídeos/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
11.
ACS Omega ; 6(12): 8403-8417, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33817501

RESUMO

Inhibition of the major cyclic adenosine monophosphate-metabolizing enzyme PDE4 has shown potential for the discovery of drugs for cancer, inflammation, and neurodegenerative disorders such as Alzheimer's disease. As a springboard to explore new anti-cancer and anti-Alzheimer's chemical prototypes from rare Annonaceae species, the present study evaluated anti-PDE4B along with antiproliferative and anti-cholinesterase activities of the extracts of the Philippine endemic species Uvaria alba using in vitro assays and framed the resulting biological significance through computational binding and reactivity-based experiments. Thus, the PDE4 B2B-inhibiting dichloromethane sub-extract (UaD) of U. alba elicited antiproliferative activity against chronic myelogenous leukemia (K-562) and cytostatic effects against human cervical cancer (HeLa). The extract also profoundly inhibited acetylcholinesterase (AChE), an enzyme involved in the progression of neurodegenerative diseases. Chemical profiling analysis of the bioactive extract identified 18 putative secondary metabolites. Molecular docking and molecular dynamics simulations showed strong free energy binding mechanisms and dynamic stability at 50-ns simulations in the catalytic domains of PDE4 B2B, ubiquitin-specific peptidase 14, and Kelch-like ECH-associated protein 1 (KEAP-1 Kelch domain) for the benzylated dihydroflavone dichamanetin (16), and of an AChE and KEAP-1 BTB domain for 3-(3,4-dihydroxybenzyl)-3',4',6-trihydroxy-2,4-dimethoxychalcone (8) and grandifloracin (15), respectively. Density functional theory calculations to demonstrate Michael addition reaction of the most electrophilic metabolite and kinetically stable grandifloracin (15) with Cys151 of the KEAP-1 BTB domain illustrated favorable formation of a ß-addition adduct. The top-ranked compounds also conferred favorable in silico pharmacokinetic properties.

12.
Plants (Basel) ; 10(3)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804446

RESUMO

Phaeanthus ophthalmicus (Roxb. ex G.Don) J.Sinclair (previously known as P. ebracteolatus (Presl) Merr) is a Philippine medicinal plant occurring as evergreen shrub in the lowland forests of Luzon islands. It is used traditionally by Filipinos to treat bacterial conjunctivitis, ulcer and wound infections. Based on previous investigations where cyclooxygenase-2 (COX-2) functions as immune-linked factor in infectious sensitivities to bacterial pathogens by triggering pro-inflammatory immune-associated reactions, we investigated the antimicrobial and COX inhibitory activities of the extracts and tetrahydrobisbenzylisoquinoline alkaloids of P. ophthalmicus in vitro and in silico to validate its ethnomedicinal uses. Thus, the dichloromethane-methanol (DCM-MeOH) crude extract and alkaloid extracts exhibiting antibacterial activities against drug-resistant bacterial strains such as methicillin-resistance Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Klebsiella pneumoniae + CRE and Pseudomonas aeruginosa + MBL afforded (+)-tetrandrine (1) and (+)-limacusine (2) as the major biologically active tetrahydrobisbenzylisoquinoline alkaloidal constituents after purification. Both tetrahydrobisbenzylisoquinoline alkaloids 1 and 2 showed broad spectrum antibacterial activity with strongest inhibition against the Gram-negative bacteria MßL-Pseudomonas aeruginosa Klebsiella pneumoniae + CRE. Interestingly, the alkaloid limacusine (2) showed selective inhibition against ovine COX-2 in vitro. These results were ascertained by molecular docking and molecular dynamics simulation experiments where alkaloid 2 showed strong affinity in the catalytic sites of Gram-negative bacterial enzymes P. aeruginosa elastase and K. pneumoniae KPC-2 carbapenemase (enzymes involved in infectivity mechanisms), and of ovine COX-2. Overall, our study provides credence on the ethnomedicinal use of the Philippine medicinal plant P. ophthalmicus as traditional plant-based adjuvant to treat bacterial conjunctivitis and other related infections. The antibacterial activities and selective COX-2 inhibition observed for limacusine (2) point to its role as the biologically active constituent of P. ophthalmicus. A limited number of drugs with COX-2 inhibitory properties like celecoxib also confer antibacterial activity. Thus, tetrahydrobisbenzyl alkaloids, especially 2, are promising pharmaceutical inspirations for developing treatments of bacterial/inflammation-related infections.

13.
J Biomol Struct Dyn ; 39(12): 4316-4333, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32476574

RESUMO

The novel coronavirus SARS-CoV2, the causative agent of the pandemic disease COVID-19, emerged in December 2019 forcing lockdown of communities in many countries. The absence of specific drugs and vaccines, the rapid transmission of the virus, and the increasing number of deaths worldwide necessitated the discovery of new substances for anti-COVID-19 drug development. With the aid of bioinformatics and computational modelling, ninety seven antiviral secondary metabolites from fungi were docked onto five SARS-CoV2 enzymes involved in viral attachment, replication, post-translational modification, and host immunity evasion infection mechanisms followed by molecular dynamics simulation and in silico ADMET prediction (absorption, distribution, metabolism, excretion and toxicity) of the hit compounds. Thus, three fumiquinazoline alkaloids scedapin C (15), quinadoline B (19) and norquinadoline A (20), the polyketide isochaetochromin D1 (8), and the terpenoid 11a-dehydroxyisoterreulactone A (11) exhibited high binding affinities on the target proteins, papain-like protease (PLpro), chymotrypsin-like protease (3CLpro), RNA-directed RNA polymerase (RdRp), non-structural protein 15 (nsp15), and the spike binding domain to GRP78. Molecular dynamics simulation was performed to optimize the interaction and investigate the stability of the top-scoring ligands in complex with the five target proteins. All tested complexes were found to have dynamic stability. Of the five top-scoring metabolites, quinadoline B (19) was predicted to confer favorable ADMET values, high gastrointestinal absorptive probability and poor blood-brain barrier crossing capacities.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , RNA Viral , Controle de Doenças Transmissíveis , Descoberta de Drogas , Chaperona BiP do Retículo Endoplasmático , Inibidores Enzimáticos , Humanos , Simulação de Acoplamento Molecular , Processamento de Proteína Pós-Traducional , SARS-CoV-2 , Ligação Viral
14.
Pharmaceutics ; 12(5)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397364

RESUMO

Bioavailability plays an important role in drug activity in the human body, as certain drug amounts should be present to elicit activity. However, low bioavailability of drugs leads to negligible use for human benefit. In this study, the diversely active neolignan, magnolol, was impregnated onto a Zr-based organometallic framework [Uio-66(Zr)] to increase its low bioavailability (4-5%) and to test its potential acute oral toxicity. Synthesis of Uio-66(Zr) was done through the solvothermal method while simple impregnation at different time points was used to incorporate magnolol. The loading capacity of Uio-66(Zr) at 36 h was found to be significantly higher at 72.16 ± 2.15% magnolol than in other incubation time. Based on the OECD 425 (limit test), toxicity was not observed at 2000 mg kg-1 dose of mag@Uio-66(Zr) in female Sprague Dawley rats. The area under the curve (AUC) at 0-720 min of mag@Uio-66(Zr) was significantly higher than the AUC of free magnolol. Moreover, relative bioavailability increased almost two-folds using Uio-66(Zr). Unconjugated magnolol was found in the liver, kidney, and brain of rats in all treatment groups. Collectively, Uio-66(Zr) provided a higher magnolol bioavailability when used as drug carrier. Thus, utilization of Uio-66(Zr) as drug carrier is of importance for maximal use for poorly soluble and lowly bioavailable drugs.

15.
Molecules ; 25(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093426

RESUMO

The alpha-glucosidase- and lipase-inhibitory activities of three phenalenones (1-3) and one phenylpropanoid (4) from the ethyl acetate extracts of a Pseudolophiosptoma sp. are described. They represent the first secondary metabolites reported from the genus Pseudolophiostoma. Scleroderolide (1) and sclerodione (2) exhibited potent α-glucosidase- and porcine-lipase-inhibitory activity during primary screening, with better IC50 values compared to the positive controls, N-deoxynojirimycin and orlistat. In silico techniques were employed to validate the probable biological targets and elucidate the mechanism of actions of phenalenones 1 and 2. Both compounds exhibited strong binding affinities to both alpha-glucosidase and porcine lipase through H-bonding and π-π interactions. Interestingly, favorable in silico ADME (absorption, distribution, metabolism, and excretion) properties such as gastrointestinal absorption were also predicted using software.


Assuntos
Ascomicetos/química , Inibidores de Glicosídeo Hidrolases , Lipase , Simulação de Acoplamento Molecular , Fenalenos , alfa-Glucosidases/química , Animais , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Lipase/antagonistas & inibidores , Lipase/química , Fenalenos/química , Fenalenos/isolamento & purificação , Suínos , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA