Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Parasitol ; 40(5): 386-400, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609741

RESUMO

Obesity is a worldwide pandemic and major risk factor for the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). T2D requires lifelong medical support to limit complications and is defined by impaired glucose tolerance, insulin resistance (IR), and chronic low-level systemic inflammation initiating from adipose tissue. The current preventative strategies include a healthy diet, controlled physical activity, and medication targeting hyperglycemia, with underexplored underlying inflammation. Studies suggest a protective role for helminth infection in the prevention of T2D. The mechanisms may involve induction of modified type 2 and regulatory immune responses that suppress inflammation and promote insulin sensitivity. In this review, the roles of helminths in counteracting MetS, and prospects for harnessing these protective mechanisms for the development of novel anti-diabetes drugs are discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Helmintos , Síndrome Metabólica , Animais , Humanos , Helmintos/imunologia , Helmintos/fisiologia , Síndrome Metabólica/imunologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/parasitologia , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Helmintíase/imunologia , Helmintíase/parasitologia , Obesidade/imunologia , Obesidade/metabolismo , Interações Hospedeiro-Parasita/imunologia , Resistência à Insulina
2.
J Leukoc Biol ; 113(2): 191-202, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822180

RESUMO

Eosinophils are granular leukocytes of the innate immune system that play important functions in host defense. Inappropriate activation of eosinophils can occur in pathologies such as asthma and esophagitis. However, eosinophils also reside within adipose tissue, where they play homeostatic roles and are important in the activation of thermogenic beige fat. Here we performed bulk RNA sequencing in mouse adipose tissue-resident eosinophils isolated from both subcutaneous and gonadal depots, for the first time, and compared gene expression to blood eosinophils. We found a predominantly conserved transcriptional landscape in eosinophils between adipose depots that is distinct from blood eosinophils in circulation. Through exploration of differentially expressed transcription factors and transcription factors with binding sites enriched in adipose-resident eosinophil genes, we identified KLF, CEBP, and Fos/Jun family members that may drive functional specialization of eosinophils in adipose tissue. These findings increase our understanding of tissue-specific eosinophil heterogeneity, with implications for targeting eosinophil function to treat metabolic disorders such as obesity.


Assuntos
Tecido Adiposo , Eosinófilos , Animais , Camundongos , Eosinófilos/metabolismo , Obesidade/metabolismo , Adiposidade , Fatores de Transcrição/metabolismo
3.
STAR Protoc ; 3(3): 101598, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35928006

RESUMO

Here, we describe protocols to interrogate the binding of the zinc fingers of the transcription factor ZBTB7A to the fetal γ-globin (HBG) promoter. We detail the steps for performing electrophoretic mobility shift assays (EMSAs), X-ray crystallography, and isothermal titration calorimetry (ITC) to explore this interaction. These techniques could readily be applied to the structural studies of other zinc finger transcription factors and cognate DNA sequences. For complete details on the use and execution of this protocol, please refer to Yang et al. (2021).


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Linhagem Celular Tumoral , DNA/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Dedos de Zinco
4.
Blood ; 139(14): 2107-2118, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35090172

RESUMO

The benign condition hereditary persistence of fetal hemoglobin (HPFH) is known to ameliorate symptoms of co-inherited ß-hemoglobinopathies, such as sickle cell disease and ß-thalassemia. The condition is sometimes associated with point mutations in the fetal globin promoters that disrupt the binding of the repressors BCL11A or ZBTB7A/LRF, which have been extensively studied. HPFH is also associated with a range of deletions within the ß-globin locus that all reside downstream of the fetal HBG2 gene. These deletional forms of HPFH are poorly understood and are the focus of this study. Numerous different mechanisms have been proposed to explain how downstream deletions can boost the expression of the fetal globin genes, including the deletion of silencer elements, of genes encoding noncoding RNA, and bringing downstream enhancer elements into proximity with the fetal globin gene promoters. Here we systematically analyze the deletions associated with both HPFH and a related condition known as δß-thalassemia and propose a unifying mechanism. In all cases where fetal globin is upregulated, the proximal adult ß-globin (HBB) promoter is deleted. We use clustered regularly interspaced short palindromic repeats-mediated gene editing to delete or disrupt elements within the promoter and find that virtually all mutations that reduce ΗΒΒ promoter activity result in elevated fetal globin expression. These results fit with previous models where the fetal and adult globin genes compete for the distal locus control region and suggest that targeting the ΗΒΒ promoter might be explored to elevate fetal globin and reduce sickle globin expression as a treatment of ß-hemoglobinopathies.


Assuntos
Globinas , Talassemia beta , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Expressão Gênica , Globinas/metabolismo , Humanos , Fatores de Transcrição/genética , Globinas beta/genética , Globinas beta/metabolismo , Talassemia beta/genética , Talassemia beta/terapia
5.
FEBS J ; 289(2): 308-318, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513286

RESUMO

Populations of white blood cells (leukocytes) have been found in tissues and organs across the body, in states of both health and disease. The role leukocytes play within these tissues is often highly contested. For many leukocytes, there are studies outlining pro-inflammatory destructive functions, while other studies provide clear evidence of anti-inflammatory homeostatic activities of leukocytes within the same tissue. We discuss how this functional dissonance can be explained by leukocyte heterogeneity. Although cell morphology and surface receptor profiles are excellent methods to segregate cell types, the true degree of leukocyte heterogeneity that exists can only be appreciated by studying the variable and dynamic gene expression profile. Unbiased single-cell RNA sequencing profiling of tissue-resident leukocytes is transforming the way we understand leukocytes across health and disease. Recent investigations into adipose tissue-resident leukocytes have revealed unprecedented levels of heterogeneity among populations of macrophages. We use this example to pose emerging questions regarding tissue-resident leukocytes and review what is currently known (and unknown) about the diversity of tissue-resident leukocytes within different organs.


Assuntos
Regulação da Expressão Gênica/genética , Heterogeneidade Genética , Leucócitos/metabolismo , Receptores de Superfície Celular/genética , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Regulação da Expressão Gênica/imunologia , Homeostase/genética , Humanos , Leucócitos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , RNA-Seq , Distribuição Tecidual/genética , Distribuição Tecidual/imunologia
6.
Cell Rep ; 36(13): 109759, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34592153

RESUMO

Elevated levels of fetal globin protect against ß-hemoglobinopathies, such as sickle cell disease and ß-thalassemia. Two zinc-finger (ZF) repressors, BCL11A and ZBTB7A/LRF, bind directly to the fetal globin promoter elements positioned at -115 and -200, respectively. Here, we describe X-ray structures of the ZBTB7A DNA-binding domain, consisting of four adjacent ZFs, in complex with the -200 sequence element, which contains two copies of four consecutive C:G base pairs. ZF1 and ZF2 recognize the 5' C:G quadruple, and ZF4 contacts the 3' C:G quadruple. Natural non-coding DNA mutations associated with hereditary persistence of fetal hemoglobin (HPFH) impair ZBTB7A DNA binding, with the most severe disruptions resulting from mutations in the base pairs recognized by ZF1 and ZF2. Our results firmly establish ZBTB7A/LRF as a key molecular regulator of fetal globin expression and inform genome-editing strategies that inhibit repressor binding and boost fetal globin expression to treat hemoglobinopathies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Globinas/genética , Globinas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Hemoglobina Fetal/genética , Edição de Genes/métodos , Humanos , Fatores de Transcrição/genética , Dedos de Zinco/fisiologia , Talassemia beta/genética
7.
Sci Adv ; 7(27)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34215586

RESUMO

Homozygosity for the common ACTN3 null polymorphism (ACTN3 577X) results in α-actinin-3 deficiency in ~20% of humans worldwide and is linked to reduced sprint and power performance in both elite athletes and the general population. α-Actinin-3 deficiency is also associated with reduced muscle mass, increased risk of sarcopenia, and altered muscle wasting response induced by denervation and immobilization. Here, we show that α-actinin-3 plays a key role in the regulation of protein synthesis and breakdown signaling in skeletal muscle and influences muscle mass from early postnatal development. We also show that α-actinin-3 deficiency reduces the atrophic and anti-inflammatory response to the glucocorticoid dexamethasone in muscle and protects against dexamethasone-induced muscle wasting in female but not male mice. The effects of α-actinin-3 deficiency on muscle mass regulation and response to muscle wasting provide an additional mechanistic explanation for the positive selection of the ACTN3 577X allele in recent human history.

8.
Metabolism ; 117: 154724, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33548253

RESUMO

AIMS: Mitochondrial uncouplers decrease caloric efficiency and have potential therapeutic benefits for the treatment of obesity and related metabolic disorders. Herein we investigate the metabolic and physiologic effects of a recently identified small molecule mitochondrial uncoupler named SHC517 in a mouse model of diet-induced obesity. METHODS: SHC517 was administered as an admixture in food. The effect of SHC517 on in vivo energy expenditure and respiratory quotient was determined by indirect calorimetry. A dose-finding obesity prevention study was performed by starting SHC517 treatment concomitant with high fat diet for a period of 12 days. An obesity reversal study was performed by feeding mice western diet for 4 weeks prior to SHC517 treatment for 7 weeks. Biochemical assays were used to determine changes in glucose, insulin, triglycerides, and cholesterol. SHC517 concentrations were determined by mass spectrometry. RESULTS: SHC517 increased lipid oxidation without affecting body temperature. SHC517 prevented diet-induced obesity when administered at 0.05% and 0.1% w/w in high fat diet and reversed established obesity when tested at the 0.05% dose. In the obesity reversal model, SHC517 restored adiposity to levels similar to chow-fed control mice without affecting food intake or lean body mass. SHC517 improved glucose tolerance and fasting glucose levels when administered in both the obesity prevention and obesity reversal modes. CONCLUSIONS: SHC517 is a mitochondrial uncoupler with potent anti-obesity and insulin sensitizing effects in mice. SHC517 reversed obesity without altering food intake or compromising lean mass, effects that are highly sought-after in anti-obesity therapeutics.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Obesidade/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Calorimetria Indireta/métodos , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Obesidade/metabolismo
9.
Nat Commun ; 11(1): 2922, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523103

RESUMO

The conversion of white adipocytes to thermogenic beige adipocytes represents a potential mechanism to treat obesity and related metabolic disorders. However, the mechanisms involved in converting white to beige adipose tissue remain incompletely understood. Here we show profound beiging in a genetic mouse model lacking the transcriptional repressor Krüppel-like factor 3 (KLF3). Bone marrow transplants from these animals confer the beige phenotype on wild type recipients. Analysis of the cellular and molecular changes reveal an accumulation of eosinophils in adipose tissue. We examine the transcriptomic profile of adipose-resident eosinophils and posit that KLF3 regulates adipose tissue function via transcriptional control of secreted molecules linked to beiging. Furthermore, we provide evidence that eosinophils may directly act on adipocytes to drive beiging and highlight the critical role of these little-understood immune cells in thermogenesis.


Assuntos
Tecido Adiposo/metabolismo , Eosinófilos/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Transdução de Sinais/fisiologia , Adiposidade/genética , Adiposidade/fisiologia , Animais , Células COS , Chlorocebus aethiops , Imunoprecipitação da Cromatina , Citometria de Fluxo , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Obesidade/metabolismo , Transdução de Sinais/genética , Software
10.
Nat Commun ; 11(1): 2560, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444652

RESUMO

Alterations in DNA methylation occur during development, but the mechanisms by which they influence gene expression remain uncertain. There are few examples where modification of a single CpG dinucleotide directly affects transcription factor binding and regulation of a target gene in vivo. Here, we show that the erythroid transcription factor GATA-1 - that typically binds T/AGATA sites - can also recognise CGATA elements, but only if the CpG dinucleotide is unmethylated. We focus on a single CGATA site in the c-Kit gene which progressively becomes unmethylated during haematopoiesis. We observe that methylation attenuates GATA-1 binding and gene regulation in cell lines. In mice, converting the CGATA element to a TGATA site that cannot be methylated leads to accumulation of megakaryocyte-erythroid progenitors. Thus, the CpG dinucleotide is essential for normal erythropoiesis and this study illustrates how a single methylated CpG can directly affect transcription factor binding and cellular regulation.


Assuntos
Fator de Transcrição GATA1/genética , Elementos de Resposta , Animais , Sequência de Bases , Sítios de Ligação , Metilação de DNA , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica
11.
J Biol Chem ; 295(18): 6080-6091, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32213596

RESUMO

Bacterial products such as lipopolysaccharides (or endotoxin) cause systemic inflammation, resulting in a substantial global health burden. The onset, progression, and resolution of the inflammatory response to endotoxin are usually tightly controlled to avoid chronic inflammation. Members of the NF-κB family of transcription factors are key drivers of inflammation that activate sets of genes in response to inflammatory signals. Such responses are typically short-lived and can be suppressed by proteins that act post-translationally, such as the SOCS (suppressor of cytokine signaling) family. Less is known about direct transcriptional regulation of these responses, however. Here, using a combination of in vitro approaches and in vivo animal models, we show that endotoxin treatment induced expression of the well-characterized transcriptional repressor Krüppel-like factor 3 (KLF3), which, in turn, directly repressed the expression of the NF-κB family member RELA/p65. We also observed that KLF3-deficient mice were hypersensitive to endotoxin and exhibited elevated levels of circulating Ly6C+ monocytes and macrophage-derived inflammatory cytokines. These findings reveal that KLF3 is a fundamental suppressor that operates as a feedback inhibitor of RELA/p65 and may be important in facilitating the resolution of inflammation.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Fatores de Transcrição Kruppel-Like/deficiência , Macrófagos/metabolismo , Camundongos , Fator de Transcrição RelA/genética , Ativação Transcricional
12.
Clin Exp Pharmacol Physiol ; 47(8): 1495-1505, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32163614

RESUMO

Eosinophils are granular cells of the innate immune system that are found in almost all vertebrates and some invertebrates. Knowledge of their wide-ranging roles in health and disease has largely been attained through studies in mice and humans. Although eosinophils are typically associated with helminth infections and allergic diseases such as asthma, there is building evidence that beneficial homeostatic eosinophils residing in specific niches are important for tissue development, remodelling and metabolic control. In recent years, the importance of immune cells in the regulation of adipose tissue homeostasis has been a focal point of research efforts. There is an abundance of anti-inflammatory innate immune cells in lean white adipose tissue, including macrophages, eosinophils and group 2 innate lymphoid cells, which promote energy homeostasis and stimulate the development of thermogenic beige adipocytes. This review will evaluate evidence for the role of adipose-resident eosinophils in local tissue homeostasis, beiging and systemic metabolism, highlighting where more research is needed to establish the specific effector functions that adipose eosinophils perform in response to different internal and external cues.


Assuntos
Tecido Adiposo/metabolismo , Eosinófilos/metabolismo , Homeostase , Tecido Adiposo/citologia , Animais , Humanos
13.
Bioessays ; 41(8): e1900041, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31245868

RESUMO

Transcriptional silencing may not necessarily depend on the continuous residence of a sequence-specific repressor at a control element and may act via a "hit and run" mechanism. Due to limitations in assays that detect transcription factor (TF) binding, such as chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), this phenomenon may be challenging to detect and therefore its prevalence may be underappreciated. To explore this possibility, erythroid gene promoters that are regulated directly by GATA1 in an inducible system are analyzed. It is found that many regulated genes are bound immediately after induction of GATA1 but the residency of GATA1 decreases over time, particularly at repressed genes. Furthermore, it is shown that the repressive mark H3K27me3 is seldom associated with bound repressors, whereas, in contrast, the active (H3K4me3) histone mark is overwhelmingly associated with TF binding. It is hypothesized that during cellular differentiation and development, certain genes are silenced by repressive TFs that subsequently vacate the region. Catching such repressor TFs in the act of silencing via assays such as ChIP-seq is thus a temporally challenging prospect. The use of inducible systems, epitope tags, and alternative techniques may provide opportunities for detecting elusive "hit and run" transcriptional silencing. Also see the video abstract here https://youtu.be/vgrsoP_HF3g.


Assuntos
Inativação Gênica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Sequenciamento de Cromatina por Imunoprecipitação , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Loci Gênicos , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Ativação Transcricional
14.
J Immunol ; 202(6): 1826-1832, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30700586

RESUMO

The polarization processes for M1 versus M2 macrophages are quite distinct in the context of changes in cellular metabolism. M1 macrophages are highly glycolytic, whereas M2 macrophages require a more oxidative nutrient metabolism. An important part of M1 polarization involves upregulation of the glucose transporter (GLUT) GLUT1 to facilitate increased glucose uptake and glycolytic metabolism; however, the role of other glucose transporters in this process is largely unknown. In surveying the Functional Annotation of the Mammalian Genome and Gene Expression Omnibus Profiles databases, we discovered that the glucose transporter GLUT6 is highly upregulated in LPS-activated macrophages. In our previous work, we have not detected mouse GLUT6 protein expression in any noncancerous tissue; therefore, in this study, we investigated the expression and significance of GLUT6 in bone marrow-derived macrophages from wild-type and GLUT6 knockout C57BL/6 mice. We show that LPS-induced M1 polarization markedly upregulated GLUT6 protein, whereas naive macrophages and IL-4-induced M2 macrophages do not express GLUT6 protein. However, despite strong upregulation of GLUT6 in M1 macrophages, the absence of GLUT6 did not alter M1 polarization in the context of glucose uptake, glycolytic metabolism, or cytokine production. Collectively, these data show that GLUT6 is dispensable for LPS-induced M1 polarization and function. These findings are important because GLUT6 is an anticancer drug target, and this study suggests that inhibition of GLUT6 may not impart detrimental side effects on macrophage function to interfere with their antitumor properties.


Assuntos
Diferenciação Celular/imunologia , Proteínas Facilitadoras de Transporte de Glucose/imunologia , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout
15.
Blood ; 133(8): 852-856, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30617196

RESUMO

ß-hemoglobinopathies, such as sickle cell disease and ß-thalassemia, result from mutations in the adult ß-globin gene. Reactivating the developmentally silenced fetal γ-globin gene elevates fetal hemoglobin levels and ameliorates symptoms of ß-hemoglobinopathies. The continued expression of fetal γ-globin into adulthood occurs naturally in a genetic condition termed hereditary persistence of fetal hemoglobin (HPFH). Point mutations in the fetal γ-globin proximal promoter can cause HPFH. The -113A>G HPFH mutation falls within the -115 cluster of HPFH mutations, a binding site for the fetal globin repressor BCL11A. We demonstrate that the -113A>G HPFH mutation, unlike other mutations in the cluster, does not disrupt BCL11A binding but rather creates a de novo binding site for the transcriptional activator GATA1. Introduction of the -113A>G HPFH mutation into erythroid cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system increases GATA1 binding and elevates fetal globin levels. These results reveal the mechanism by which the -113A>G HPFH mutation elevates fetal globin and demonstrate the sensitivity of the fetal globin promoter to point mutations that often disrupt repressor binding sites but here create a de novo site for an erythroid activator.


Assuntos
Anemia Falciforme , Hemoglobina Fetal , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica , Mutação Puntual , Elementos de Resposta , Talassemia beta , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Linhagem Celular , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , Fator de Transcrição GATA1/genética , Globinas beta/genética , Globinas beta/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismo
16.
Biotechnol Rep (Amst) ; 20: e00285, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30364711

RESUMO

The ability of transcriptional regulators to drive lineage conversion of somatic cells offers great potential for the treatment of human disease. To explore the concept of switching on specific target genes in heterologous cells, we developed a model system to screen candidate factors for their ability to activate the archetypal megakaryocyte-specific chemokine platelet factor 4 (PF4) in fibroblasts. We found that co-expression of the transcriptional regulators GATA1 and FLI1 resulted in a significant increase in levels of PF4, which became magnified over time. This finding demonstrates that such combinations can be used to produce potentially beneficial chemokines in readily available heterologous cell types.

17.
Trends Genet ; 34(12): 927-940, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30287096

RESUMO

Disorders in hemoglobin (hemoglobinopathies) were the first monogenic diseases to be characterized and remain among the most common and best understood genetic conditions. Moreover, the study of the ß-globin locus provides a textbook example of developmental gene regulation. The fetal γ-globin genes (HBG1/HBG2) are ordinarily silenced around birth, whereupon their expression is replaced by the adult ß-globin genes (HBB primarily and HBD). Over 50 years ago it was recognized that mutations that cause lifelong persistence of fetal γ-globin expression ameliorate the debilitating effects of mutations in ß-globin. Since then, research has focused on therapeutically reactivating the fetal γ-globin genes. Here, we summarize recent discoveries, focusing on the influence of genome editing technologies, including CRISPR-Cas9, and emerging gene therapy approaches.


Assuntos
Terapia Genética/tendências , Hemoglobinopatias/genética , Globinas beta/genética , gama-Globinas/genética , Adulto , Sistemas CRISPR-Cas/genética , Edição de Genes/tendências , Hemoglobinopatias/sangue , Hemoglobinopatias/patologia , Humanos , Mutação , Globinas beta/uso terapêutico , gama-Globinas/uso terapêutico
18.
Bioessays ; 40(10): e1800098, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30132936

RESUMO

Despite promising early work into the role of immune cells such as eosinophils in adipose tissue (AT) homeostasis, recent findings revealed that elevating the number of eosinophils in AT alone is insufficient for improving metabolic impairments in obese mice. Eosinophils are primarily recognized for their role in allergic immunity and defence against parasitic worms. They have also been detected in AT and appear to contribute to adipose homeostasis and drive energy expenditure, but the underlying mechanisms remain elusive. It has long been recognized that immune cells such as macrophages respond to external signals to regulate adipose homeostasis and energy balance, however, less is known about the relevance of eosinophil activity in AT. As the authors propose in this review, given recent debate over the relative importance of their tissue-specific abundance, the stage is now set for exploring the functionality and activation states of AT eosinophils.


Assuntos
Tecido Adiposo/citologia , Eosinófilos/fisiologia , Obesidade/metabolismo , Redução de Peso/fisiologia , Tecido Adiposo/fisiologia , Adiposidade/fisiologia , Animais , Homeostase , Humanos , Camundongos Obesos , Obesidade/patologia
19.
Nat Genet ; 50(4): 498-503, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29610478

RESUMO

ß-hemoglobinopathies such as sickle cell disease (SCD) and ß-thalassemia result from mutations in the adult HBB (ß-globin) gene. Reactivating the developmentally silenced fetal HBG1 and HBG2 (γ-globin) genes is a therapeutic goal for treating SCD and ß-thalassemia 1 . Some forms of hereditary persistence of fetal hemoglobin (HPFH), a rare benign condition in which individuals express the γ-globin gene throughout adulthood, are caused by point mutations in the γ-globin gene promoter at regions residing ~115 and 200 bp upstream of the transcription start site. We found that the major fetal globin gene repressors BCL11A and ZBTB7A (also known as LRF) directly bound to the sites at -115 and -200 bp, respectively. Furthermore, introduction of naturally occurring HPFH-associated mutations into erythroid cells by CRISPR-Cas9 disrupted repressor binding and raised γ-globin gene expression. These findings clarify how these HPFH-associated mutations operate and demonstrate that BCL11A and ZBTB7A are major direct repressors of the fetal globin gene.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hemoglobina Fetal/genética , Mutação , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , gama-Globinas/genética , Anemia Falciforme/genética , Anemia Falciforme/terapia , Sequência de Bases , Sítios de Ligação/genética , Sistemas CRISPR-Cas , Linhagem Celular , Humanos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Sítio de Iniciação de Transcrição , Talassemia beta/genética , Talassemia beta/terapia
20.
Methods Mol Biol ; 1698: 245-257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29076095

RESUMO

Genome editing to introduce specific mutations or to knock out genes in model cell systems has become an efficient platform for research in the fields of molecular biology, genetics, and cell biology. With recent rapid improvements in genome editing techniques, bench-top manipulation of the genome in cell culture has become progressively easier. The application of this knowledge to erythroid cell culture systems now allows the rapid analysis of the downstream effects of virtually any engineered gene disruption or modification in cell systems. Here, we describe a CRISPR/Cas9-based approach to making genomic modifications in erythroid lineage cells which we have successfully used in both murine (MEL) and human (K562) erythroleukaemia immortalized cell lines.


Assuntos
Células Eritroides/metabolismo , Edição de Genes , Genoma , Genômica , Animais , Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Células Cultivadas , Análise Mutacional de DNA , Genes Reporter , Genômica/métodos , Humanos , Mutação , Plasmídeos/genética , RNA Guia de Cinetoplastídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA