Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Neurosci Methods ; 412: 110279, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39265820

RESUMO

BACKGROUND: Multivariate pattern analysis (MVPA) has proven an excellent tool in cognitive neuroscience. It also holds a strong promise when applied to optically-pumped magnetometer-based magnetoencephalography. NEW METHOD: To optimize OPM-MEG systems for MVPA experiments this study examines data from a conventional MEG magnetometer array, focusing on appropriate noise reduction techniques for magnetometers. We determined the least required number of sensors needed for robust MVPA for image categorization experiments. RESULTS: We found that the use of signal space separation (SSS) without a proper regularization significantly lowered the classification accuracy considering a sub-array of 102 magnetometers or a sub-array of 204 gradiometers. We also found that classification accuracy did not improve when going beyond 30 sensors irrespective of whether SSS has been applied. COMPARISON WITH EXISTING METHODS: The power spectra of data filtered with SSS has a substantially higher noise floor that data cleaned with SSP or HFC. Consequently, MVPA decoding results obtained from the SSS-filtered data are significantly lower compared to all other methods employed. CONCLUSIONS: When designing MEG system based on SQUID magnetometers optimized for multivariate analysis for image categorization experiments, about 30 magnetometers are sufficient. We advise against applying SSS filters without a proper regularization to data from MEG and OPM systems prior to performing MVPA as this method, albeit reducing low-frequency external noise contributions, also introduces an increase in broadband noise. We recommend employing noise reduction techniques that either decrease or maintain the noise floor of the data like signal-space projection, homogeneous field correction and gradient noise reduction.

2.
mBio ; 15(9): e0103424, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39072646

RESUMO

Gut microbes can impact cognition and behavior, but whether they regulate the division of labor in animal societies is unknown. We addressed this question using honeybees since they exhibit division of labor between nurses and foragers and because their gut microbiota can be manipulated. Using automated behavioral tracking and controlling for co-housing effects, we show that gut microbes influence the age at which bees start expressing foraging-like behaviors in the laboratory but have no effects on the time spent in a foraging arena and number of foraging trips. Moreover, the gut microbiota did not influence hallmarks of behavioral maturation such as body weight, cuticular hydrocarbon profile, hypopharyngeal gland size, gene expression, and the proportion of bees maturing into foragers. Overall, this study shows that the honeybee gut microbiota plays a role in controlling the onset of foraging-related behavior without permanent consequences on colony-level division of labor and several physiological hallmarks of behavioral maturation. IMPORTANCE: The honeybee is emerging as a model system for studying gut microbiota-host interactions. Previous studies reported gut microbiota effects on multiple worker bee phenotypes, all of which change during behavioral maturation-the transition from nursing to foraging. We tested whether the documented effects may stem from an effect of the microbiota on behavioral maturation. The gut microbiota only subtly affected maturation: it accelerated the onset of foraging without affecting the overall proportion of foragers or their average output. We also found no effect of the microbiota on host weight, cuticular hydrocarbon (CHC) profile, hypopharyngeal gland size, and the expression of behavioral maturation-related genes. These results are inconsistent with previous studies reporting effects of the gut microbiota on bee weight and CHC profile. Our experiments revealed that co-housed bees tend to converge in behavior and physiology, suggesting that spurious associations may emerge when rearing environments are not replicated sufficiently or accounted for analytically.


Assuntos
Microbioma Gastrointestinal , Animais , Abelhas/microbiologia , Abelhas/fisiologia , Microbioma Gastrointestinal/fisiologia , Comportamento Alimentar , Comportamento Animal
3.
Hum Brain Mapp ; 45(10): e26782, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38989630

RESUMO

This study assesses the reliability of resting-state dynamic causal modelling (DCM) of magnetoencephalography (MEG) under conductance-based canonical microcircuit models, in terms of both posterior parameter estimates and model evidence. We use resting-state MEG data from two sessions, acquired 2 weeks apart, from a cohort with high between-subject variance arising from Alzheimer's disease. Our focus is not on the effect of disease, but on the reliability of the methods (as within-subject between-session agreement), which is crucial for future studies of disease progression and drug intervention. To assess the reliability of first-level DCMs, we compare model evidence associated with the covariance among subject-specific free energies (i.e., the 'quality' of the models) with versus without interclass correlations. We then used parametric empirical Bayes (PEB) to investigate the differences between the inferred DCM parameter probability distributions at the between subject level. Specifically, we examined the evidence for or against parameter differences (i) within-subject, within-session, and between-epochs; (ii) within-subject between-session; and (iii) within-site between-subjects, accommodating the conditional dependency among parameter estimates. We show that for data acquired close in time, and under similar circumstances, more than 95% of inferred DCM parameters are unlikely to differ, speaking to mutual predictability over sessions. Using PEB, we show a reciprocal relationship between a conventional definition of 'reliability' and the conditional dependency among inferred model parameters. Our analyses confirm the reliability and reproducibility of the conductance-based DCMs for resting-state neurophysiological data. In this respect, the implicit generative modelling is suitable for interventional and longitudinal studies of neurological and psychiatric disorders.


Assuntos
Doença de Alzheimer , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Magnetoencefalografia/normas , Reprodutibilidade dos Testes , Doença de Alzheimer/fisiopatologia , Masculino , Feminino , Idoso , Modelos Neurológicos , Teorema de Bayes
4.
J Cogn Neurosci ; 36(8): 1760-1769, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38739567

RESUMO

The timing of semantic processing during object recognition in the brain is a topic of ongoing discussion. One way of addressing this question is by applying multivariate pattern analysis to human electrophysiological responses to object images of different semantic categories. However, although multivariate pattern analysis can reveal whether neuronal activity patterns are distinct for different stimulus categories, concerns remain on whether low-level visual features also contribute to the classification results. To circumvent this issue, we applied a cross-decoding approach to magnetoencephalography data from stimuli from two different modalities: images and their corresponding written words. We employed items from three categories and presented them in a randomized order. We show that if the classifier is trained on words, pictures are classified between 150 and 430 msec after stimulus onset, and when training on pictures, words are classified between 225 and 430 msec. The topographical map, identified using a searchlight approach for cross-modal activation in both directions, showed left lateralization, confirming the involvement of linguistic representations. These results point to semantic activation of pictorial stimuli occurring at ∼150 msec, whereas for words, the semantic activation occurs at ∼230 msec.


Assuntos
Magnetoencefalografia , Reconhecimento Visual de Modelos , Semântica , Humanos , Feminino , Masculino , Adulto , Reconhecimento Visual de Modelos/fisiologia , Adulto Jovem , Encéfalo/fisiologia , Estimulação Luminosa , Mapeamento Encefálico , Leitura
5.
Hum Brain Mapp ; 45(7): e26700, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726799

RESUMO

The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.


Assuntos
Magnetoencefalografia , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Adulto , Masculino , Feminino , Adulto Jovem , Cadeias de Markov , Desempenho Psicomotor/fisiologia , Córtex Cerebral/fisiologia , Movimento/fisiologia , Ritmo beta/fisiologia
6.
bioRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798416

RESUMO

Background: Functional MRS (fMRS) is a technique used to measure metabolic changes in response to increased neuronal activity, providing unique insights into neurotransmitter dynamics and neuroenergetics. In this study we investigate the response of lactate and glutamate levels in the motor cortex during a sustained motor task using conventional spectral fitting and explore the use of a novel analysis approach based on the application of linear modelling directly to the spectro-temporal fMRS data. Methods: fMRS data were acquired at a field strength of 3 Tesla from 23 healthy participants using a short echo-time (28ms) semi-LASER sequence. The functional task involved rhythmic hand clenching over a duration of 8 minutes and standard MRS preprocessing steps, including frequency and phase alignment, were employed. Both conventional spectral fitting and direct linear modelling were applied, and results from participant-averaged spectra and metabolite-averaged individual analyses were compared. Results: We observed a 20% increase in lactate in response to the motor task, consistent with findings at higher magnetic field strengths. However, statistical testing showed some variability between the two averaging schemes and fitting algorithms. While lactate changes were supported by the direct spectral modelling approach, smaller increases in glutamate (2%) were inconsistent. Exploratory spectral modelling identified a 4% decrease in aspartate, aligning with conventional fitting and observations from prolonged visual stimulation. Conclusion: We demonstrate that lactate dynamics in response to a prolonged motor task are observed using short-echo time semi-LASER at 3 Tesla, and that direct linear modelling of fMRS data is a useful complement to conventional analysis. Future work includes mitigating spectral confounds, such as scalp lipid contamination and lineshape drift, and further validation of our novel direct linear modelling approach through experimental and simulated datasets.

7.
Am J Clin Pathol ; 162(3): 243-251, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38642073

RESUMO

OBJECTIVES: Iron-deficiency anemia (IDA) is a common health problem worldwide, and up to 10% of adult patients with incidental IDA may have gastrointestinal cancer. A diagnosis of IDA can be established through a combination of laboratory tests, but it is often underrecognized until a patient becomes symptomatic. Based on advances in machine learning, we hypothesized that we could reduce the time to diagnosis by developing an IDA prediction model. Our goal was to develop 3 neural networks by using retrospective longitudinal outpatient laboratory data to predict the risk of IDA 3 to 6 months before traditional diagnosis. METHODS: We analyzed retrospective outpatient electronic health record data between 2009 and 2020 from an academic medical center in northern Texas. We included laboratory features from 30,603 patients to develop 3 types of neural networks: artificial neural networks, long short-term memory cells, and gated recurrent units. The classifiers were trained using the Adam Optimizer across 200 random training-validation splits. We calculated accuracy, area under the receiving operating characteristic curve, sensitivity, and specificity in the testing split. RESULTS: Although all models demonstrated comparable performance, the gated recurrent unit model outperformed the other 2, achieving an accuracy of 0.83, an area under the receiving operating characteristic curve of 0.89, a sensitivity of 0.75, and a specificity of 0.85 across 200 epochs. CONCLUSIONS: Our results showcase the feasibility of employing deep learning techniques for early prediction of IDA in the outpatient setting based on sequences of laboratory data, offering a substantial lead time for clinical intervention.


Assuntos
Anemia Ferropriva , Aprendizado Profundo , Humanos , Anemia Ferropriva/diagnóstico , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Idoso , Redes Neurais de Computação , Diagnóstico Precoce , Registros Eletrônicos de Saúde , Sensibilidade e Especificidade
8.
Hosp Pract (1995) ; 52(1-2): 19-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38407180

RESUMO

OBJECTIVES: Use of proton pump inhibitors (PPIs) is a mainstay in treating upper gastrointestinal bleeding (UGIB). However, the beneficial effects of PPIs are not anticipated to extend beyond the duodenum and may actually contribute to the risk of lower gastrointestinal bleeding (LGIB). However, in practice, PPIs are often used for inpatients with LGIB where no benefit exists. METHODS: A retrospective chart review was performed on inpatients during a 2-year period at an urban academic teaching hospital. Inpatients with consults to the gastroenterology (GI) service with confirmed or highly suspected LGIB were included. Outcomes regarding PPI use and the GI consulting service recommendations in these 225 patients were evaluated. RESULTS: About 37.8% of patients were started on a PPI during their inpatient course. Of those, 46% patients started on a PPI had no indication for PPI and 85% had no recommendation by the GI consultants to start a PPI. Of the 85 patients started on PPI, the GI consultants recommended stopping it in two (2.3%) patients. Lastly, 20 patients (9%) were discharged on PPI without an indication for PPI. CONCLUSION: To our knowledge, this is the first study that looked at the inappropriate utilization of PPIs in patients admitted for LGIBs utilizing GI consultant recommendations. Given the large proportion of patients started on PPI without a clinical indication and continued at discharge and the paucity of GI recommendations to discontinue inappropriate use, we found that clinical care may be improved with formal GI recommendations regarding use of PPI.


Assuntos
Hemorragia Gastrointestinal , Prescrição Inadequada , Inibidores da Bomba de Prótons , Humanos , Inibidores da Bomba de Prótons/uso terapêutico , Inibidores da Bomba de Prótons/administração & dosagem , Estudos Retrospectivos , Masculino , Hemorragia Gastrointestinal/tratamento farmacológico , Feminino , Prescrição Inadequada/prevenção & controle , Prescrição Inadequada/estatística & dados numéricos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Hospitais de Ensino , Hospitalização/estatística & dados numéricos , Adulto
9.
Brain Commun ; 6(1): fcae011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344655

RESUMO

Motor recovery is still limited for people with stroke especially those with greater functional impairments. In order to improve outcome, we need to understand more about the mechanisms underpinning recovery. Task-unbiased, blood flow-independent post-stroke neural activity can be acquired from resting brain electrophysiological recordings and offers substantial promise to investigate physiological mechanisms, but behaviourally relevant features of resting-state sensorimotor network dynamics have not yet been identified. Thirty-seven people with subcortical ischaemic stroke and unilateral hand paresis of any degree were longitudinally evaluated at 3 weeks (early subacute) and 12 weeks (late subacute) after stroke. Resting-state magnetoencephalography and clinical scores of motor function were recorded and compared with matched controls. Magnetoencephalography data were decomposed using a data-driven hidden Markov model into 10 time-varying resting-state networks. People with stroke showed statistically significantly improved Action Research Arm Test and Fugl-Meyer upper extremity scores between 3 weeks and 12 weeks after stroke (both P < 0.001). Hidden Markov model analysis revealed a primarily alpha-band ipsilesional resting-state sensorimotor network which had a significantly increased life-time (the average time elapsed between entering and exiting the network) and fractional occupancy (the occupied percentage among all networks) at 3 weeks after stroke when compared with controls. The life-time of the ipsilesional resting-state sensorimotor network positively correlated with concurrent motor scores in people with stroke who had not fully recovered. Specifically, this relationship was observed only in ipsilesional rather in contralesional sensorimotor network, default mode network or visual network. The ipsilesional sensorimotor network metrics were not significantly different from controls at 12 weeks after stroke. The increased recruitment of alpha-band ipsilesional resting-state sensorimotor network at subacute stroke served as functionally correlated biomarkers exclusively in people with stroke with not fully recovered hand paresis, plausibly reflecting functional motor recovery processes.

10.
Nat Microbiol ; 9(2): 477-489, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225461

RESUMO

Diverse bacteria can colonize the animal gut using dietary nutrients or by engaging in microbial crossfeeding interactions. Less is known about the role of host-derived nutrients in enabling gut bacterial colonization. Here we examined metabolic interactions within the evolutionary ancient symbiosis between the honey bee (Apis mellifera) and the core gut microbiota member Snodgrassella alvi. This betaproteobacterium is incapable of metabolizing saccharides, yet colonizes the honey bee gut in the presence of a sugar-only diet. Using comparative metabolomics, 13C-tracers and nanoscale secondary ion mass spectrometry (NanoSIMS), we show in vivo that S. alvi grows on host-derived organic acids, including citrate, glycerate and 3-hydroxy-3-methylglutarate, which are actively secreted by the host into the gut lumen. S. alvi also modulates tryptophan metabolism in the gut by converting kynurenine to anthranilate. These results suggest that S. alvi is adapted to a specific metabolic niche in the honey bee gut that depends on host-derived nutritional resources.


Assuntos
Microbioma Gastrointestinal , Neisseriaceae , Abelhas , Animais , Trato Gastrointestinal/microbiologia , Bactérias
11.
Elife ; 122024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285016

RESUMO

Neural activity contains rich spatiotemporal structure that corresponds to cognition. This includes oscillatory bursting and dynamic activity that span across networks of brain regions, all of which can occur on timescales of tens of milliseconds. While these processes can be accessed through brain recordings and imaging, modeling them presents methodological challenges due to their fast and transient nature. Furthermore, the exact timing and duration of interesting cognitive events are often a priori unknown. Here, we present the OHBA Software Library Dynamics Toolbox (osl-dynamics), a Python-based package that can identify and describe recurrent dynamics in functional neuroimaging data on timescales as fast as tens of milliseconds. At its core are machine learning generative models that are able to adapt to the data and learn the timing, as well as the spatial and spectral characteristics, of brain activity with few assumptions. osl-dynamics incorporates state-of-the-art approaches that can be, and have been, used to elucidate brain dynamics in a wide range of data types, including magneto/electroencephalography, functional magnetic resonance imaging, invasive local field potential recordings, and electrocorticography. It also provides novel summary measures of brain dynamics that can be used to inform our understanding of cognition, behavior, and disease. We hope osl-dynamics will further our understanding of brain function, through its ability to enhance the modeling of fast dynamic processes.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Tetranitrato de Pentaeritritol , Encéfalo/diagnóstico por imagem , Cognição , Eletrocorticografia , Eletroencefalografia
12.
AACE Clin Case Rep ; 9(2): 55-56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056415
13.
Elife ; 122023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961500

RESUMO

Beta oscillations in human sensorimotor cortex are hallmark signatures of healthy and pathological movement. In single trials, beta oscillations include bursts of intermittent, transient periods of high-power activity. These burst events have been linked to a range of sensory and motor processes, but their precise spatial, spectral, and temporal structure remains unclear. Specifically, a role for beta burst activity in information coding and communication suggests spatiotemporal patterns, or travelling wave activity, along specific anatomical gradients. We here show in human magnetoencephalography recordings that burst activity in sensorimotor cortex occurs in planar spatiotemporal wave-like patterns that dominate along two axes either parallel or perpendicular to the central sulcus. Moreover, we find that the two propagation directions are characterised by distinct anatomical and physiological features. Finally, our results suggest that sensorimotor beta bursts occurring before and after a movement can be distinguished by their anatomical, spectral, and spatiotemporal characteristics, indicating distinct functional roles.


Assuntos
Ritmo beta , Córtex Sensório-Motor , Humanos , Ritmo beta/fisiologia , Córtex Sensório-Motor/fisiologia , Movimento/fisiologia , Magnetoencefalografia
14.
Hum Brain Mapp ; 44(1): 66-81, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36259549

RESUMO

Epilepsy is a highly heterogeneous neurological disorder with variable etiology, manifestation, and response to treatment. It is imperative that new models of epileptiform brain activity account for this variability, to identify individual needs and allow clinicians to curate personalized care. Here, we use a hidden Markov model (HMM) to create a unique statistical model of interictal brain activity for 10 pediatric patients. We use magnetoencephalography (MEG) data acquired as part of standard clinical care for patients at the Children's Hospital of Philadelphia. These data are routinely analyzed using excess kurtosis mapping (EKM); however, as cases become more complex (extreme multifocal and/or polymorphic activity), they become harder to interpret with EKM. We assessed the performance of the HMM against EKM for three patient groups, with increasingly complicated presentation. The difference in localization of epileptogenic foci for the two methods was 7 ± 2 mm (mean ± SD over all 10 patients); and 94% ± 13% of EKM temporal markers were matched by an HMM state visit. The HMM localizes epileptogenic areas (in agreement with EKM) and provides additional information about the relationship between those areas. A key advantage over current methods is that the HMM is a data-driven model, so the output is tuned to each individual. Finally, the model output is intuitive, allowing a user (clinician) to review the result and manually select the HMM epileptiform state, offering multiple advantages over previous methods and allowing for broader implementation of MEG epileptiform analysis in surgical decision-making for patients with intractable epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Criança , Magnetoencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Philadelphia , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos
15.
BMJ Open ; 12(12): e055135, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521898

RESUMO

INTRODUCTION: With the pressing need to develop treatments that slow or stop the progression of Alzheimer's disease, new tools are needed to reduce clinical trial duration and validate new targets for human therapeutics. Such tools could be derived from neurophysiological measurements of disease. METHODS AND ANALYSIS: The New Therapeutics in Alzheimer's Disease study (NTAD) aims to identify a biomarker set from magneto/electroencephalography that is sensitive to disease and progression over 1 year. The study will recruit 100 people with amyloid-positive mild cognitive impairment or early-stage Alzheimer's disease and 30 healthy controls aged between 50 and 85 years. Measurements of the clinical, cognitive and imaging data (magnetoencephalography, electroencephalography and MRI) of all participants will be taken at baseline. These measurements will be repeated after approximately 1 year on participants with Alzheimer's disease or mild cognitive impairment, and clinical and cognitive assessment of these participants will be repeated again after approximately 2 years. To assess reliability of magneto/electroencephalographic changes, a subset of 30 participants with mild cognitive impairment or early-stage Alzheimer's disease will also undergo repeat magneto/electroencephalography 2 weeks after baseline. Baseline and longitudinal changes in neurophysiology are the primary analyses of interest. Additional outputs will include atrophy and cognitive change and estimated numbers needed to treat each arm of simulated clinical trials of a future disease-modifying therapy. ETHICS AND DATA STATEMENT: The study has received a favourable opinion from the East of England Cambridge Central Research Ethics Committee (REC reference 18/EE/0042). Results will be disseminated through internal reports, peer-reviewed scientific journals, conference presentations, website publication, submission to regulatory authorities and other publications. Data will be made available via the Dementias Platform UK Data Portal on completion of initial analyses by the NTAD study group.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Longitudinais , Reprodutibilidade dos Testes , Progressão da Doença , Estudos de Coortes
16.
IEEE Open J Signal Process ; 3: 320-334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172264

RESUMO

The analysis of harmonics and non-sinusoidal waveform shape in time-series data is growing in importance. However, a precise definition of what constitutes a harmonic is lacking. In this paper, we propose a rigorous definition of when to consider signals to be in a harmonic relationship based on an integer frequency ratio, constant phase, and a well-defined joint instantaneous frequency. We show this definition is linked to extrema counting and Empirical Mode Decomposition (EMD). We explore the mathematics of our definition and link it to results from analytic number theory. This naturally leads to us to define two classes of harmonic structures, termed strong and weak, with different extrema behaviour. We validate our framework using both simulations and real data. Specifically, we look at the harmonic structures in shallow water waves, the FitzHugh-Nagumo neuronal model, and the non-sinusoidal theta oscillation in rat hippocampus local field potential data. We further discuss how our definition helps to address mode splitting in nonlinear time-series decomposition methods. A clear understanding of when harmonics are present in signals will enable a deeper understanding of the functional roles of non-sinusoidal oscillations.

17.
Neuroimage ; 263: 119595, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36041643

RESUMO

Accurate temporal modelling of functional brain networks is essential in the quest for understanding how such networks facilitate cognition. Researchers are beginning to adopt time-varying analyses for electrophysiological data that capture highly dynamic processes on the order of milliseconds. Typically, these approaches, such as clustering of functional connectivity profiles and Hidden Markov Modelling (HMM), assume mutual exclusivity of networks over time. Whilst a powerful constraint, this assumption may be compromising the ability of these approaches to describe the data effectively. Here, we propose a new generative model for functional connectivity as a time-varying linear mixture of spatially distributed statistical "modes". The temporal evolution of this mixture is governed by a recurrent neural network, which enables the model to generate data with a rich temporal structure. We use a Bayesian framework known as amortised variational inference to learn model parameters from observed data. We call the approach DyNeMo (for Dynamic Network Modes), and show using simulations it outperforms the HMM when the assumption of mutual exclusivity is violated. In resting-state MEG, DyNeMo reveals a mixture of modes that activate on fast time scales of 100-150 ms, which is similar to state lifetimes found using an HMM. In task MEG data, DyNeMo finds modes with plausible, task-dependent evoked responses without any knowledge of the task timings. Overall, DyNeMo provides decompositions that are an approximate remapping of the HMM's while showing improvements in overall explanatory power. However, the magnitude of the improvements suggests that the HMM's assumption of mutual exclusivity can be reasonable in practice. Nonetheless, DyNeMo provides a flexible framework for implementing and assessing future modelling developments.


Assuntos
Imageamento por Ressonância Magnética , Rede Nervosa , Humanos , Teorema de Bayes , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cognição
18.
Nat Ecol Evol ; 6(10): 1471-1479, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995848

RESUMO

The gut microbiota influences animal neurodevelopment and behaviour but has not previously been documented to affect group-level properties of social organisms. Here, we use honeybees to probe the effect of the gut microbiota on host social behaviour. We found that the microbiota increased the rate and specialization of head-to-head interactions between bees. Microbiota colonization was associated with higher abundances of one-third of the metabolites detected in the brain, including amino acids with roles in synaptic transmission and brain energetic function. Some of these metabolites were significant predictors of the number of social interactions. Microbiota colonization also affected brain transcriptional processes related to amino acid metabolism and epigenetic modifications in a brain region involved in sensory perception. These results demonstrate that the gut microbiota modulates the emergent colony social network of honeybees and suggest changes in chromatin accessibility and amino acid biosynthesis as underlying processes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Aminoácidos , Animais , Abelhas , Cromatina , Rede Social
19.
Neuroimage ; 260: 119462, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35872176

RESUMO

Decoding of high temporal resolution, stimulus-evoked neurophysiological data is increasingly used to test theories about how the brain processes information. However, a fundamental relationship between the frequency spectra of the neural signal and the subsequent decoding accuracy timecourse is not widely recognised. We show that, in commonly used instantaneous signal decoding paradigms, each sinusoidal component of the evoked response is translated to double its original frequency in the subsequent decoding accuracy timecourses. We therefore recommend, where researchers use instantaneous signal decoding paradigms, that more aggressive low pass filtering is applied with a cut-off at one quarter of the sampling rate, to eliminate representational alias artefacts. However, this does not negate the accompanying interpretational challenges. We show that these can be resolved by decoding paradigms that utilise both a signal's instantaneous magnitude and its local gradient information as features for decoding. On a publicly available MEG dataset, this results in decoding accuracy metrics that are higher, more stable over time, and free of the technical and interpretational challenges previously characterised. We anticipate that a broader awareness of these fundamental relationships will enable stronger interpretations of decoding results by linking them more clearly to the underlying signal characteristics that drive them.


Assuntos
Mapeamento Encefálico , Encéfalo , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Neurofisiologia
20.
Prog Neurobiol ; 214: 102281, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35550908

RESUMO

Neural oscillations are thought to play a central role in orchestrating activity states between distant neural populations. For example, during isometric contraction, 13-30 Hz beta activity becomes phase coupled between the motor cortex and the contralateral muscle. This and related observations have led to the proposal that beta activity and connectivity sustain stable cognitive and motor states - or the 'status quo' - in the brain. Recently, however, beta activity at the single-trial level has been shown to be short-lived - though so far this has been reported for regional beta activity in tasks without sustained motor demands. Here, we measured magnetoencephalography (MEG) and electromyography (EMG) in 18 human participants performing a sustained isometric contraction (gripping) task. If cortico-muscular beta connectivity is directly responsible for sustaining a stable motor state, then beta activity within single trials should be (or become) sustained in this context. In contrast, we found that motor beta activity and connectivity with the downstream muscle were transient. Moreover, we found that sustained motor requirements did not prolong beta-event duration in comparison to rest. These findings suggest that neural synchronisation between the brain and the muscle involves short 'bursts' of frequency-specific connectivity, even when task demands - and motor behaviour - are sustained.


Assuntos
Magnetoencefalografia , Córtex Motor , Eletromiografia , Humanos , Córtex Motor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA