Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4083, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438338

RESUMO

Antibiotic resistance poses a global health threat, but the within-host drivers of resistance remain poorly understood. Pathogen populations are often assumed to be clonal within hosts, and resistance is thought to emerge due to selection for de novo variants. Here we show that mixed strain populations are common in the opportunistic pathogen P. aeruginosa. Crucially, resistance evolves rapidly in patients colonized by multiple strains through selection for pre-existing resistant strains. In contrast, resistance evolves sporadically in patients colonized by single strains due to selection for novel resistance mutations. However, strong trade-offs between resistance and growth rate occur in mixed strain populations, suggesting that within-host diversity can also drive the loss of resistance in the absence of antibiotic treatment. In summary, we show that the within-host diversity of pathogen populations plays a key role in shaping the emergence of resistance in response to treatment.


Assuntos
Pacientes , Humanos , Resistência Microbiana a Medicamentos/genética
2.
ISME J ; 16(10): 2433-2447, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35859161

RESUMO

Antibiotic degrading bacteria can reduce the efficacy of drug treatments by providing antibiotic exposure protection to pathogens. While this has been demonstrated at the ecological timescale, it is unclear how exposure protection might alter and be affected by pathogen antibiotic resistance evolution. Here, we utilised a two-species model cystic fibrosis (CF) community where we evolved the bacterial pathogen Pseudomonas aeruginosa in a range of imipenem concentrations in the absence or presence of Stenotrophomonas maltophilia, which can detoxify the environment by hydrolysing ß-lactam antibiotics. We found that P. aeruginosa quickly evolved resistance to imipenem via parallel loss of function mutations in the oprD porin gene. While the level of resistance did not differ between mono- and co-culture treatments, the presence of S. maltophilia increased the rate of imipenem resistance evolution in the four µg/ml imipenem concentration. Unexpectedly, imipenem resistance evolution coincided with the extinction of S. maltophilia due to increased production of pyocyanin, which was cytotoxic to S. maltophilia. Together, our results show that pathogen resistance evolution can disrupt antibiotic exposure protection due to competitive exclusion of the protective species. Such eco-evolutionary feedbacks may help explain changes in the relative abundance of bacterial species within CF communities despite intrinsic resistance to anti-pseudomonal drugs.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Humanos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Porinas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Piocianina
3.
Nat Commun ; 12(1): 2460, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911082

RESUMO

It is well established that antibiotic treatment selects for resistance, but the dynamics of this process during infections are poorly understood. Here we map the responses of Pseudomonas aeruginosa to treatment in high definition during a lung infection of a single ICU patient. Host immunity and antibiotic therapy with meropenem suppressed P. aeruginosa, but a second wave of infection emerged due to the growth of oprD and wbpM meropenem resistant mutants that evolved in situ. Selection then led to a loss of resistance by decreasing the prevalence of low fitness oprD mutants, increasing the frequency of high fitness mutants lacking the MexAB-OprM efflux pump, and decreasing the copy number of a multidrug resistance plasmid. Ultimately, host immunity suppressed wbpM mutants with high meropenem resistance and fitness. Our study highlights how natural selection and host immunity interact to drive both the rapid rise, and fall, of resistance during infection.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Meropeném/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Seleção Genética/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Humanos , Hidroliases/genética , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Plasmídeos/genética , Porinas/genética , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/imunologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Análise de Sequência de DNA , Choque Hemorrágico/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA