Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2312326, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38389502

RESUMO

Clinical treatment of cancer commonly incorporates X-ray radiation therapy (XRT), and developing spatially precise radiation-activatable drug delivery strategies may improve XRT efficacy while limiting off-target toxicities associated with systemically administered drugs. Nevertheless, achieving this has been challenging thus far because strategies typically rely on radical species with short lifespans, and the inherent nature of hypoxic and acidic tumor microenvironments may encourage spatially heterogeneous effects. It is hypothesized that the challenge could be bypassed by using scintillating nanoparticles that emit light upon X-ray absorption, locally forming therapeutic drug depots in tumor tissues. Thus a nanoparticle platform (Scintillating nanoparticle Drug Depot; SciDD) that enables the local release of cytotoxic payloads only after activation by XRT is developed, thereby limiting off-target toxicity. As a proof-of-principle, SciDD is used to deliver a microtubule-destabilizing payload MMAE (monomethyl auristatin E). With as little as a 2 Gy local irradiation to tumors, MMAE payloads are released effectively to kill tumor cells. XRT-mediated drug release is demonstrated in multiple mouse cancer models and showed efficacy over XRT alone (p < 0.0001). This work shows that SciDD can act as a local drug depot with spatiotemporally controlled release of cancer therapeutics.

2.
Clin Cancer Res ; 29(17): 3457-3470, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289199

RESUMO

PURPOSE: Oncogene-driven macropinocytosis fuels nutrient scavenging in some cancer types, yet whether this occurs in thyroid cancers with prominent MAPK-ERK and PI3K pathway mutations remains unclear. We hypothesized that understanding links between thyroid cancer signaling and macropinocytosis might uncover new therapeutic strategies. EXPERIMENTAL DESIGN: Macropinocytosis was assessed across cells derived from papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), non-malignant follicular thyroid, and aggressive anaplastic thyroid cancer (ATC), by imaging fluorescent dextran and serum albumin. The impacts of ectopic BRAFV600E and mutant RAS, genetic PTEN silencing, and inhibitors targeting RET, BRAF, and MEK kinases were quantified. BrafV600E p53-/- ATC tumors in immunocompetent mice were used to measure efficacy of an albumin-drug conjugate comprising microtubule-destabilizing monomethyl auristatin E (MMAE) linked to serum albumin via a cathepsin-cleavable peptide (Alb-vc-MMAE). RESULTS: FTC and ATC cells showed greater macropinocytosis than non-malignant and PTC cells. ATC tumors accumulated albumin at 8.8% injected dose per gram tissue. Alb-vc-MMAE, but not MMAE alone, reduced tumor size by >90% (P < 0.01). ATC macropinocytosis depended on MAPK/ERK activity and nutrient signaling, and increased by up to 230% with metformin, phenformin, or inhibition of IGF1Ri in monoculture but not in vivo. Macrophages also accumulated albumin and express the cognate IGF1R ligand, IGF1, which reduced ATC responsiveness to IGF1Ri. CONCLUSIONS: These findings identify regulated oncogene-driven macropinocytosis in thyroid cancers and demonstrate the potential of designing albumin-bound drugs to efficiently treat them.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Camundongos , Animais , Fosfatidilinositol 3-Quinases/genética , Mutação , Proteínas Proto-Oncogênicas B-raf , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/genética , Oncogenes , Câncer Papilífero da Tireoide/genética , Albumina Sérica/genética , Albumina Sérica/uso terapêutico
3.
Bioconjug Chem ; 33(8): 1474-1484, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35833631

RESUMO

Conjugation of therapeutic payloads to biologics including antibodies and albumin can enhance the selectively of drug delivery to solid tumors. However, achieving activity in tumors while avoiding healthy tissues remains a challenge, and payload activity in off-target tissues can cause toxicity for many such drug-conjugates. Here, we address this issue by presenting a drug-conjugate linker strategy that releases an active therapeutic payload upon exposure to ionizing radiation. Localized X-ray irradiation at clinically relevant doses (8 Gy) yields 50% drug (doxorubicin or monomethyl auristatin E, MMAE) release under hypoxic conditions that are traditionally associated with radiotherapy resistance. As proof-of-principle, we apply the approach to antibody- and albumin-drug conjugates and achieve >2000-fold enhanced MMAE cytotoxicity upon irradiation. Overall, this work establishes ionizing radiation as a strategy for spatially localized cancer drug delivery.


Assuntos
Antineoplásicos , Imunoconjugados , Albuminas , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Preparações Farmacêuticas
4.
Adv Drug Deliv Rev ; 185: 114237, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35364124

RESUMO

Albumin is the most abundant plasma protein, exhibits extended circulating half-life, and its properties have long been exploited for diagnostics and therapies. Many drugs intrinsically bind albumin or have been designed to do so, yet questions remain about true rate limiting factors that govern albumin-based transport and their pharmacological impacts, particularly in advanced solid cancers. Imaging techniques have been central to quantifying - at a molecular and single-cell level - the impact of mechanisms such as phagocytic immune cell signaling, FcRn-mediated recycling, oncogene-driven macropinocytosis, and albumin-drug interactions on spatial albumin deposition and related pharmacology. Macroscopic imaging of albumin-binding probes quantifies vessel structure, permeability, and supports efficiently targeted molecular imaging. Albumin-based imaging in patients and animal disease models thus offers a strategy to understand mechanisms, guide drug development and personalize treatments.


Assuntos
Albuminas , Neoplasias , Animais , Sistemas de Liberação de Medicamentos , Humanos , Imagem Molecular , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
5.
Adv Mater ; 34(8): e2107892, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890082

RESUMO

Surface chemistry critically affects the diagnostic performance of biosensors. An ideal sensor surface should be resistant to nonspecific protein adsorption, yet be conducive to analytical responses. Here a new polymeric material, zwitterionic polypyrrole (ZiPPy), is reported to produce optimal surface condition for biosensing electrodes. ZiPPy combines two unique advantages: the zwitterionic function that efficiently hydrates electrode surface, hindering nonspecific binding of hydrophobic proteins; and the pyrrole backbone, which enables rapid (<7 min), controlled deposition of ZiPPy through electropolymerization. ZiPPy-coated electrodes show lower electrochemical impedance and less nonspecific protein adsorption (low fouling), outperforming bare and polypyrrole-coated electrodes. Moreover, affinity ligands for target biomarkers can be immobilized together with ZiPPy in a single-step electropolymerization. ZiPPy-coated electrodes are developed with specificity for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prepared sensor detects SARS-CoV-2 antibodies in human saliva down to 50 ng mL-1 , without the need for sample purification or secondary labeling.


Assuntos
Anticorpos Antivirais/análise , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Polímeros/química , Pirróis/química , Técnicas Biossensoriais/instrumentação , COVID-19/virologia , Técnicas Eletroquímicas , Eletrodos , Galvanoplastia , Ouro/química , Humanos , Limite de Detecção , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Saliva/metabolismo , Propriedades de Superfície
6.
Cancer Immunol Res ; 10(1): 40-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34795032

RESUMO

Macrophages often abound within tumors, express colony-stimulating factor 1 receptor (CSF1R), and are linked to adverse patient survival. Drugs blocking CSF1R signaling have been used to suppress tumor-promoting macrophage responses; however, their mechanisms of action remain incompletely understood. Here, we assessed the lung tumor immune microenvironment in mice treated with BLZ945, a prototypical small-molecule CSF1R inhibitor, using single-cell RNA sequencing and mechanistic validation approaches. We showed that tumor control was not caused by CSF1R+ cell depletion; instead, CSF1R targeting reshaped the CSF1R+ cell landscape, which unlocked cross-talk between antitumoral CSF1R- cells. These cells included IFNγ-producing natural killer and T cells, and an IL12-producing dendritic cell subset, denoted as DC3, which were all necessary for CSF1R inhibitor-mediated lung tumor control. These data indicate that CSF1R targeting can activate a cardinal cross-talk between cells that are not macrophages and that are essential to mediate the effects of T cell-targeted immunotherapies and promote antitumor immunity.See related Spotlight by Burrello and de Visser, p. 4.


Assuntos
Células Dendríticas/imunologia , Imunoterapia/métodos , Interferon gama/metabolismo , Interleucina-12/metabolismo , Neoplasias Pulmonares/terapia , Animais , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Feminino , Neoplasias Pulmonares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Picolínicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Eur J Med Chem ; 224: 113729, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34365128

RESUMO

Previous studies demonstrated that anti-hyperlipidemic drug gemfibrozil acts as NO- and heme-independent activator of NO receptor soluble guanylyl cyclase. A series of new gemfibrozil derivatives were synthesized and evaluated for sGC activation. The structure-activity relationship study identified the positions in gemfibrozil's scaffold that are detrimental for sGC activation and those that are amendable for optimizing modifications. Compared with gemfibrozil, compounds 7c and 15b were more potent activators of cGMP-forming activity of purified sGC and exhibited enhanced relaxation of preconstricted mouse thoracic aorta rings. These studies established the overall framework needed for futher improvement of sGC activators based on gemfibrozil scaffold.


Assuntos
Genfibrozila/uso terapêutico , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/efeitos dos fármacos , Animais , Genfibrozila/farmacologia , Humanos , Camundongos , Relação Estrutura-Atividade
8.
Adv Ther (Weinh) ; 4(5)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33997272

RESUMO

Multiple potent covalent inhibitors for mutant KRAS G12C have been described and some are in clinical trials. These small molecule inhibitors potentially allow for companion imaging probe development, thereby expanding the chemical biology toolkit to investigate mutant KRAS biology. Herein, we synthesized and tested a series of fluorescent companion imaging drugs (CID) for KRAS G12C, using two scaffolds, ARS-1323 and AMG-510. We created four fluorescent derivatives of each by attaching BODIPY dyes. We found that two fluorescent derivatives (BODIPY FL and BODIPY TMR) of ARS-1323 bind mutant KRAS and can be used for biochemical binding screens. Unfortunately, these drugs could not be used as direct imaging agents in cells, likely because of non-specific membrane labeling. To circumvent this challenge, we then used a two step procedure in cancer cells where an ARS-1323 alkyne is used for target binding followed by fluorescence imaging after in situ click chemsitry with picolyl azide Alexa Fluor 647. We show that this approach can be used to image mutant KRAS G12C directly in cells. Given the current lack of mutant KRAS G12C specific antibodies, these reagents could be useful for specific fluorescence imaging.

9.
ACS Med Chem Lett ; 12(5): 812-816, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34055230

RESUMO

Mycophenolic acid (MPA) and its morpholino ester prodrug mycophenolate mofetil (MMF) are widely used in solid organ transplantation. These drugs prevent rejection due to their potent inhibition of inosine-5'-monophosphate dehydrogenase (IMPDH), an enzyme vital for lymphocyte proliferation. As a strategy to provide localized immunosuppression in cell transplantation, four mycophenolic acid prodrugs designed to release MPA by two distinct mechanisms were synthesized and characterized. A nitrobenzyl ether prodrug was effectively converted to MPA upon exposure to bacterial nitroreductase, while a propargyl ether was converted to the active drug by immobilized Pd0 nanoparticles. In vitro, both prodrugs were inactive against IMPDH and exhibited reduced toxicity relative to the active drug, suggesting their potential for providing localized immunosuppression.

10.
Biomaterials ; 159: 13-24, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29309990

RESUMO

The systemic administration of immunosuppressive and anti-inflammatory drugs is routinely employed in organ transplantation to minimize graft rejection and improve graft survival. Localized drug delivery has the potential to improve transplant outcomes by providing sustained exposure to efficacious drug concentrations while avoiding systemic immunosuppression and off-target effects. Here, we describe the synthesis of a novel prodrug and its direct covalent conjugation to pancreatic islets via a cleavable linker. Post-transplant, linker hydrolysis results in the release of a potent anti-inflammatory antagonist of TLR4, localized to the site of implantation. This covalent islet modification significantly reduces the time and the minimal effective dose of islets necessary to achieve normoglycemia in a murine transplantation model. In streptozotocin-induced diabetic C57BL/6 mice a syngeneic transplant of ∼100 modified islets achieved a 100% cure rate by the end of a 4-week monitoring period, compared to a 0% cure rate for untreated control islets. Overall, this direct prodrug conjugation to islets is well tolerated and preserves their functionality while affording significantly superior transplant outcomes. The development of drug-eluting tissues that deliver sustained and localized doses of small-molecule therapeutics represents a novel pathway for enhancing success in transplantation.


Assuntos
Diabetes Mellitus/cirurgia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/fisiologia , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus/metabolismo , Glucosamina/análogos & derivados , Glucosamina/farmacologia , Inflamação/imunologia , Inflamação/cirurgia , Lipídeo A/análogos & derivados , Lipídeo A/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA