Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(20): e2117440119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533277

RESUMO

Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks' horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial "cryptic" lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.


Assuntos
Tubarões , Animais , Espécies em Perigo de Extinção , Plâncton , Navios
2.
Acta Crystallogr C Struct Chem ; 75(Pt 6): 650-656, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166916

RESUMO

Reaction of 2-allyl-N-benzyl-4-fluoroaniline or 2-allyl-N-benzyl-4-chloroaniline with 98% sulfuric acid leads to the concurrent formation of halogeno-substituted 11-ethyl-6,11-dihydrodibenzo[b,e]azepines, (II), and halogeno-substituted 11-methyl-5,6,11,12-tetrahydrodibenzo[b,f]azocines, (III), in each case in (II):(III) molar ratios of ca 2:1. Further reaction of (II) leads to ethyl 13-ethyl-2-halogeno-4-oxo-8,13-dihydro-4H-benzo[5,6]azepino[3,2,1-ij]quinoline-5-carboxylate, while acetylation of (III) gives the corresponding N-acetyl derivatives. The dibenzo[b,e]azepine and dibenzo[b,f]azocine ring systems are of importance in forming the core of a variety of bioactive compounds. In ethyl 13-ethyl-2-fluoro-4-oxo-8,13-dihydro-4H-benzo[5,6]azepino[3,2,1-ij]quinoline-5-carboxylate, C22H20FNO3, (IVa), the azepine ring adopts a conformation close to the twist-boat form, and the molecules are linked into a three-dimensional framework structure by a combination of C-H...O and C-H...π(arene) hydrogen bonds. The azocine ring in 5-acetyl-2-chloro-11-methyl-5,6,11,12-tetrahydrobenzo[b,f]azocine, C18H18ClNO, (Vb), adopts the boat-boat conformation and the molecules are again linked by C-H...O and C-H...π(arene) hydrogen bonds, but this time form a sheet structure.

3.
Acta Crystallogr C Struct Chem ; 75(Pt 6): 686-693, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166920

RESUMO

The title compound, C21H20ClN5, has been synthesized in two steps from (RS)-4-chloro-6,11-dimethyl-6,11-dihydro-5H-benzo[b]pyrimido[5,4-f]azepine and characterized by 1H and 13C NMR spectroscopy and by high-resolution mass spectrometry. Crystallization from hexane-ethyl acetate yields approximately equal quantities of a monoclinic polymorph in the space group Cc, (I), and an orthorhombic polymorph in the space group Pna21, (II). The molecules in polymorphs (I) and (II) show small differences in their molecular conformations, particularly in the shape of the azepine ring and the orientation of the chlorophenyl substituent. The molecules in polymorph (I) are linked by C-H...N and C-H...π(arene) hydrogen bonds to form sheets, which are linked into a three-dimensional framework structure by C-Cl...π(arene) interactions. There are no C-Cl...π(arene) interactions between the molecules in polymorph (II) and the supramolecular assembly takes the form of sheets built from C-H...N and C-H...π(arene) hydrogen bonds. Comparisons are made with some related structures.

4.
Acta Crystallogr C Struct Chem ; 74(Pt 12): 1569-1575, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30516138

RESUMO

Considering the importance of quinolones due to their broad spectrum of biological activities, the crystal structure of the title compound, C22H21NO3·0.5C7H16, has been determined. Two enantiomers of the benzazepinoquinoline molecule and one molecule of heptane form the asymmetric unit of this centrosymmetric triclinic (P-1) crystal. All the molecules in the crystal present disorder. Substitutional disorder is observed for the benzazepine molecules, where a minority conformer of the R enantiomer replaces the main conformer of the S enantiomer and vice versa. Positional disorder is found for the heptane solvent molecule, which occupies a void left by the independent enantiomers of both conformers.

5.
Acta Crystallogr C Struct Chem ; 74(Pt 3): 312-320, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29504560

RESUMO

A concise, efficient and versatile synthesis of amino-substituted benzo[b]pyrimido[5,4-f]azepines is described: starting from a 5-allyl-4,6-dichloropyrimidine, the synthesis involves base-catalysed aminolysis followed by intramolecular Friedel-Crafts cyclization. Four new amino-substituted benzo[b]pyrimido[5,4-f]azepines are reported, and all the products and reaction intermediates have been fully characterized by IR, 1H and 13C NMR spectroscopy and mass spectrometry, and the molecular and supramolecular structures of three products and one intermediate have been determined. In each of N,2,6,11-tetramethyl-N-phenyl-6,11-dihydro-5H-benzo[b]pyrimido[5,4-f]azepin-4-amine, C22H24N5, (III), 4-(1H-benzo[d]imidazol-1-yl)-6,11-dimethyl-6,11-dihydro-5H-benzo[b]pyrimido[5,4-f]azepine, which crystallizes as a 0.374-hydrate, C21H19N5·0.374H2O, (VIIIa), and 6,7,9,11-tetramethyl-4-(5-methyl-1H-benzo[d]imidazol-1-yl)-6,11-dihydro-5H-benzo[b]pyrimido[5,4-f]azepine, C24H25N5, (VIIIc), the azepine ring adopts a boat conformation, but with a different configuration at the stereogenic centre in (VIIIc), as compared with (III) and (VIIIa). In the intermediate 5-allyl-6-(1H-benzo[d]imidazol-1-yl)-N-methyl-N-(4-methylphenyl)pyrimidin-4-amine, C22N21N5, (VIIb), the immediate precursor of 4-(1H-benzo[d]imidazol-1-yl)-6,8,11-trimethyl-6,11-dihydro-5H-benzo[b]pyrimido[5,4-f]azepine, (VIIIb), the allyl group is disordered over two sets of atomic sites having occupancies of 0.688 (5) and 0.312 (5). The molecules of (III) are linked into chains by a C-H...π(pyrimidine) hydrogen bond, and those of (VIIb) are linked into complex sheets by three hydrogen bonds, one of the C-H...N type and two of C-H...π(arene) type. The molecules of the organic component in (VIIIa) are linked into a chain of rings by two C-H...π(arene) hydrogen bonds, and these chains are linked into sheets by the water components; a single weak C-H...N hydrogen bond links molecules of (VIIIc) into centrosymmetric R22(10) dimers. Comparisons are made with some related compounds.

6.
Acta Crystallogr C Struct Chem ; 74(Pt 2): 159-165, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400330

RESUMO

A versatile synthesis of multiply substituted cyclic dipeptides has been designed, based on the stepwise construction of the piperazine-2,5-dione ring using molecular fragments from four different precursor molecules. Starting from substituted 2-allylanilines, reaction with methyl 2-bromo-2-phenylacetate yields the corresponding methyl 2-(2-allylanilino)-2-phenylacetates, which react with haloacetyl chlorides to give methyl 2-[N-(2-allylphenyl)-2-haloacetamido]-2-phenylacetates, which then undergo ring closure with benzylamine to yield the corresponding cyclic dipeptides of type 4-(2-allylphenyl)-1-benzyl-3-phenylpiperazine-2,5-dione. (3RS)-4-(2-Allyl-3,5-dimethylphenyl)-1-benzyl-3-phenylpiperazine-2,5-dione, C28H28N2O2, (IIId), crystallizes with Z' = 2 in the space group P21/c; the allyl groups in the two independent molecules adopt different conformations and, in one of them, the allyl group is disordered over two sets of atomic sites having occupancies of 0.534 (4) and 0.466 (4). In both molecules, the piperazine-2,5-dione ring adopts a boat conformation, with the 3-phenyl ring in a quasi-axial site. The molecules of (IIId) are linked into a three-dimensional framework structure by a combination of three C-H...O hydrogen bonds and three C-H...π(arene) hydrogen bonds. Comparisons are made with some related structures.


Assuntos
Dipeptídeos/síntese química , Peptídeos Cíclicos/síntese química , Piperazinas/síntese química , Cristalografia por Raios X , Dipeptídeos/química , Ligação de Hidrogênio , Conformação Molecular , Peptídeos Cíclicos/química , Piperazinas/química
7.
Acta Crystallogr C Struct Chem ; 73(Pt 1): 28-35, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28035099

RESUMO

The biological potential of compounds of the tricyclic dibenzo[b,e]azepine system has resulted in considerable synthetic efforts to develop efficient methods for the synthesis of new derivatives of this kind. (9RS,15RS)-9-Ethyl-11-methyl-9,13b-dihydrodibenzo[c,f]thiazolo[3,2-a]azepin-3(2H)-one, C19H19NOS, (I), crystallizes as a kryptoracemate with Z' = 2 in the space group P21, with one molecule each of the (9R,15R) and (9S,15S) configurations in the asymmetric unit, while (9RS,15RS)-9-ethyl-7,12-dimethyl-9,13b-dihydrodibenzo[c,f]thiazolo[3,2-a]azepin-3(2H)-one, C20H21NOS, (II), crystallizes with Z' = 1 in the space group C2/c. Ethyl (13RS)-2-chloro-13-ethyl-4-oxo-8,13-dihydro-4H-benzo[5,6]azepino[3,2,1-ij]quinoline-5-carboxylate, C22H20ClNO3, (III), exhibits enantiomeric disorder in the space group P-1 such that the reference site is occupied by the 13R and 13S enantiomers, with occupancies of 0.900 (6) and 0.100 (6). In each of the two independent molecules in (I), the five-membered ring adopts an envelope conformation, but the corresponding ring in (II) adopts a half-chair conformation, while the six-membered ring in the major form of (III) adopts a twist-boat conformation. The conformation of the seven-membered ring in each of (I), (II) and the major form of (III) approximates to the twist-boat form. The molecules of compound (I) are linked by two C-H...O hydrogen bonds to form two independent antiparallel C(5) chains, with each type containing only one enantiomer. These chains are linked into sheets by two C-H...π(arene) hydrogen bonds, in which the two donors are both provided by the (9R,15R) enantiomer and the two acceptor arene rings form part of a molecule of (9S,15S) configuration, precluding any additional crystallographic symmetry. The molecules of compound (II) are linked by inversion-related C-H...π(arene) hydrogen bonds to form isolated cyclic centrosymmetric dimers. The molecules of compound (III) are linked into cyclic centrosymmetric dimers by C-H...O hydrogen bonds and these dimers are linked into chains by a π-π stacking interaction. Comparisons are made with some related structures.

8.
Acta Crystallogr C Struct Chem ; 72(Pt 7): 549-54, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27377276

RESUMO

Compounds containing the tricyclic dibenzo[b,e]azepine system have potential activity in the treatment of a number of diseases. Continuing with our studies on the synthesis of new small and potentially bioactive molecules, a synthetic route, involving acid-catalysed intramolecular Friedel-Crafts cyclization, to the readily separable diastereoisomers of 11-ethyl-6,11-dihydro-5H-dibenzo[b,e]azepine-6-carboxamide, a potentially useful precursor in the synthesis of analogues of some anti-allergenic, antidepressant and antihistaminic drugs currently in use, has been developed starting from 2-allylphenylamine and methyl 2-bromo-2-phenylacetate and proceeding via racemic methyl 2-[(2-allylphenyl)amino]-2-phenylacetate (A) and racemic 2-[(2-allylphenyl)amino]-2-phenylacetamide (B), to give the two diastereoisomers (I) and (II), C17H18N2O. Isomers (I) and (II), and their precursors (A) and (B), have all been fully characterized spectroscopically. Structure analysis of the minor isomer (I) shows that it has the (6RS,11RS) configuration, and that the azepine ring adopts a conformation intermediate between the boat and twist-boat forms, with the carboxamide and ethyl substituents both occupying quasi-equatorial sites. The molecules of (I) are linked by a combination of N-H...O, N-H...π(arene) and C-H...π(arene) hydrogen bonds to form complex sheets. Comparisons are made with the structures of some related compounds.

9.
Acta Crystallogr C Struct Chem ; 72(Pt 4): 346-57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27045186

RESUMO

A versatile synthetic method has been developed for the formation of variously substituted polycyclic pyrimidoazepine derivatives, formed by nucleophilic substitution reactions on the corresponding chloro-substituted compounds; the reactions can be promoted either by conventional heating in basic solutions or by microwave heating in solvent-free systems. Thus, (6RS)-6,11-dimethyl-3,5,6,11-tetrahydro-4H-benzo[b]pyrimido[5,4-f]azepin-4-one, C14H15N3O, (I), was isolated from a solution containing (6RS)-4-chloro-8-hydroxy-6,11-dimethyl-6,11-dihydro-5H-benzo[b]pyrimido[5,4-f]azepine and benzene-1,2-diamine; (6RS)-4-butoxy-6,11-dimethyl-6,11-dihydro-5H-benzo[b]pyrimido[5,4-f]azepin-8-ol, C18H23N3O2, (II), was formed by reaction of the corresponding 6-chloro compound with butanol, and (RS)-4-dimethylamino-6,11-dimethyl-6,11-dihydro-5H-benzo[b]pyrimido[5,4-f]azepin-8-ol, C16H20N4O, (III), was formed by reaction of the chloro analogue with alkaline dimethylformamide. (6RS)-N-Benzyl-8-methoxy-6,11-dimethyl-6,11-dihydro-5H-benzo[b]pyrimido[5,4-f]azepin-4-amine, C22H24N4O, (IV), (6RS)-N-benzyl-6-methyl-1,2,6,7-tetrahydropyrimido[5',4':6,7]azepino[3,2,1-hi]indol-8-amine, C22H22N4, (V), and (7RS)-N-benzyl-7-methyl-2,3,7,8-tetrahydro-1H-pyrimido[5',4':6,7]azepino[3,2,1-ij]quinolin-9-amine, C23H24N4, (VI), were all formed by reaction of the corresponding chloro compounds with benzylamine under microwave irradiation. In each of compounds (I)-(IV) and (VI), the azepine ring adopts a conformation close to the boat form, with the C-methyl group in a quasi-equatorial site, whereas the corresponding ring in (V) adopts a conformation intermediate between the twist-boat and twist-chair forms, with the C-methyl group in a quasi-axial site. No two of the structures of (I)-(VI) exhibit the same range of intermolecular hydrogen bonds: different types of sheet are formed in each of (I), (II), (V) and (VI), and different types of chain in each of (III) and (IV).


Assuntos
Azepinas/síntese química , Compostos Policíclicos/síntese química , Azepinas/química , Cristalografia por Raios X , Diaminas/química , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Compostos Policíclicos/química
10.
Acta Crystallogr C Struct Chem ; 72(Pt 1): 52-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26742827

RESUMO

A simple and effective two-step approach to tricyclic pyrimidine-fused benzazepines has been adapted to give the tetracyclic analogues. In (RS)-8-chloro-6-methyl-1,2,6,7-tetrahydropyrimido[5',4':6,7]azepino[3,2,1-hi]indole, C15H14ClN3, (I), the five-membered ring adopts an envelope conformation, as does the reduced pyridine ring in (RS)-9-chloro-7-methyl-2,3,7,8-tetrahydro-1H-pyrimido[5',4':6,7]azepino[3,2,1-ij]quinoline, C16H16ClN3, (II). However, the seven-membered rings in (I) and (II) adopt very different conformations, with the result that the methyl substituent occupies a quasi-axial site in (I) but a quasi-equatorial site in (II). The molecules of (I) are linked by C-H...N hydrogen bonds to form C(5) chains and inversion-related pairs of chains are linked by a π-π stacking interaction. A combination of a C-H...π hydrogen bond and two C-Cl...π interactions links the molecules of (II) into complex sheets. Comparisons are made with some similar fused heterocyclic compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA