Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6379, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316310

RESUMO

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm-2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.


Assuntos
Ecossistema , Pergelissolo , Estações do Ano , Regiões Árticas , Mudança Climática
2.
Sci Rep ; 11(1): 23219, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853354

RESUMO

Peat accumulation in high latitude wetlands represents a natural long-term carbon sink, resulting from the cumulative excess of growing season net ecosystem production over non-growing season (NGS) net mineralization in soils. With high latitudes experiencing warming at a faster pace than the global average, especially during the NGS, a major concern is that enhanced mineralization of soil organic carbon will steadily increase CO2 emissions from northern peatlands. In this study, we conducted laboratory incubations with soils from boreal and temperate peatlands across Canada. Peat soils were pretreated for different soil moisture levels, and CO2 production rates were measured at 12 sequential temperatures, covering a range from - 10 to + 35 °C including one freeze-thaw event. On average, the CO2 production rates in the boreal peat samples increased more sharply with temperature than in the temperate peat samples. For same temperature, optimum soil moisture levels for CO2 production were higher in the peat samples from more flooded sites. However, standard reaction kinetics (e.g., Q10 temperature coefficient and Arrhenius equation) failed to account for the apparent lack of temperature dependence of CO2 production rates measured below 0 °C, and a sudden increase after a freezing event. Thus, we caution against using the simple kinetic expressions to represent the CO2 emissions from northern peatlands, especially regarding the long NGS period with multiple soil freeze and thaw events.

3.
Sci Total Environ ; 782: 146841, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848861

RESUMO

Naturally-ignited wildfires are increasing in frequency and severity in northern regions, contributing to rapid permafrost thaw-induced landscape change driven by climate warming. Low-severity wildfires typically result in minor organic matter loss. The impacts of such fires on the hydrological and geochemical dynamics of peat plateau-wetland complexes have not been examined. In 2014, a low-severity wildfire, with minimal ground surface damage, burned approximately one-half of a 5 ha permafrost plateau in the wetland-dominated landscape of the Scotty Creek watershed, Northwest Territories, Canada, in the discontinuous permafrost zone. In March 2016, hydrometeorological and permafrost conditions on the burned and unaffected plateaus were monitored including snowpack characteristics and surface energy dynamics. Pore water samples were collected from the saturated layer as thaw progressed throughout the growing season on the burned and unaffected plateaus. Repeated probing of the frost table depth was coupled with laboratory analyses of peat physical and hydraulic characteristics performed on peat cores collected from the top 20 cm of the ground surface in the burned and unaffected plots. The higher transmissivity of the burned forest canopy accelerated snowmelt promoting earlier onset of the thawing season and increased the ground heat flux to melt ground ice. Wildfire increased the thickness of the supra-permafrost layer, including the active layer and talik, resulting in a more uniform subsurface with limited depressional storage capacity and reduced preferential runoff flowpaths across the burned plateau. The incorporation of ash and char into the peat matrix reduced pore diameters, promoting greater subsurface soil moisture retention and longer pore water residence times ultimately providing greater opportunity for soil-water interaction and biogeochemical reactions. Consequently, pore water showed elevated dissolved solutes, dissolved organic matter and mercury concentrations in the burned site. Low-severity wildfires have the potential to trigger a series of complex, inter-related hydrological, thermal and biogeochemical processes and feedbacks.

4.
Ground Water ; 58(2): 258-268, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31081132

RESUMO

Permafrost covers approximately 24% of the Northern Hemisphere, and much of it is degrading, which causes infrastructure failures and ecosystem transitions. Understanding groundwater and heat flow processes in permafrost environments is challenging due to spatially and temporarily varying hydraulic connections between water above and below the near-surface discontinuous frozen zone. To characterize the transitional period of permafrost degradation, a three-dimensional model of a permafrost plateau that includes the supra-permafrost zone and surrounding wetlands was developed. The model is based on the Scotty Creek basin in the Northwest Territories, Canada. FEFLOW groundwater flow and heat transport modeling software is used in conjunction with the piFreeze plug-in, to account for phase changes between ice and water. The Simultaneous Heat and Water (SHAW) flow model is used to calculate ground temperatures and surface water balance, which are then used as FEFLOW boundary conditions. As simulating actual permafrost evolution would require hundreds of years of climate variations over an evolving landscape, whose geomorphic features are unknown, methodologies for developing permafrost initial conditions for transient simulations were investigated. It was found that a model initialized with a transient spin-up methodology, that includes an unfrozen layer between the permafrost table and ground surface, yields better results than with steady-state permafrost initial conditions. This study also demonstrates the critical role that variations in land surface and permafrost table microtopography, along with talik development, play in permafrost degradation. Modeling permafrost dynamics will allow for the testing of remedial measures to stabilize permafrost in high value infrastructure environments.


Assuntos
Água Subterrânea , Pergelissolo , Canadá , Clima , Ecossistema
5.
Glob Chang Biol ; 26(4): 2304-2319, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31834984

RESUMO

Despite occupying a small fraction of the landscape, fluvial networks are disproportionately large emitters of CO2 and CH4 , with the potential to offset terrestrial carbon sinks. Yet the extent of this offset remains uncertain, because current estimates of fluvial emissions often do not integrate beyond individual river reaches and over the entire fluvial network in complex landscapes. Here we studied broad patterns of concentrations and isotopic signatures of CO2 and CH4 in 50 streams in the western boreal biome of Canada, across an area of 250,000 km2 . Our study watersheds differ starkly in their geology (sedimentary and shield), permafrost extent (sporadic to extensive discontinuous) and land cover (large variability in lake and wetland extents). We also investigated the effect of wildfire, as half of our study streams drained watersheds affected by megafires that occurred 3 years prior. Similar to other boreal regions, we found that stream CO2 concentrations were primarily associated with greater terrestrial productivity and warmer climates, and decreased downstream within the fluvial network. No effects of recent wildfire, bedrock geology or land cover composition were found. The isotopic signatures suggested dominance of biogenic CO2 sources, despite dominant carbonate bedrock in parts of the study region. Fluvial CH4 concentrations had a high variability which could not be explained by any landscape factors. Estimated fluvial CO2 emissions were 0.63 (0.09-6.06, 95% CI) and 0.29 (0.17-0.44, 95% CI) g C m-2  year-1 at the landscape scale using a stream network modelling and a mass balance approach, respectively, a small but potentially important component of the landscape C balance. These fluvial CO2 emissions are lower than in other northern regions, likely due to a drier climate. Overall, our study suggests that fluvial CO2 emissions are unlikely to be sensitive to altered fire regimes, but that warming and permafrost thaw will increase emissions significantly.

6.
Glob Chang Biol ; 26(2): 682-696, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31596019

RESUMO

Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2 ) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010-2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon-climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.


Assuntos
Ecossistema , Fotossíntese , Alaska , Regiões Árticas , Canadá , Ciclo do Carbono , Dióxido de Carbono , Mudança Climática , Estações do Ano
7.
Nat Commun ; 9(1): 3041, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072751

RESUMO

Permafrost vulnerability to climate change may be underestimated unless effects of wildfire are considered. Here we assess impacts of wildfire on soil thermal regime and rate of thermokarst bog expansion resulting from complete permafrost thaw in western Canadian permafrost peatlands. Effects of wildfire on permafrost peatlands last for 30 years and include a warmer and deeper active layer, and spatial expansion of continuously thawed soil layers (taliks). These impacts on the soil thermal regime are associated with a tripled rate of thermokarst bog expansion along permafrost edges. Our results suggest that wildfire is directly responsible for 2200 ± 1500 km2 (95% CI) of thermokarst bog development in the study region over the last 30 years, representing ~25% of all thermokarst bog expansion during this period. With increasing fire frequency under a warming climate, this study emphasizes the need to consider wildfires when projecting future circumpolar permafrost thaw.

8.
Glob Chang Biol ; 23(8): 3231-3248, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28132402

RESUMO

In the sporadic permafrost zone of northwestern Canada, boreal forest carbon dioxide (CO2 ) fluxes will be altered directly by climate change through changing meteorological forcing and indirectly through changes in landscape functioning associated with thaw-induced collapse-scar bog ('wetland') expansion. However, their combined effect on landscape-scale net ecosystem CO2 exchange (NEELAND ), resulting from changing gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover change impacts on NEELAND and direct climate change impacts on modeled temperature- and light-limited NEELAND of a boreal forest-wetland landscape. Using nested eddy covariance flux towers, we find both GPP and ER to be larger at the landscape compared to the wetland level. However, annual NEELAND (-20 g C m-2 ) and wetland NEE (-24 g C m-2 ) were similar, suggesting negligible wetland expansion effects on NEELAND . In contrast, we find non-negligible direct climate change impacts when modeling NEELAND using projected air temperature and incoming shortwave radiation. At the end of the 21st century, modeled GPP mainly increases in spring and fall due to reduced temperature limitation, but becomes more frequently light-limited in fall. In a warmer climate, ER increases year-round in the absence of moisture stress resulting in net CO2 uptake increases in the shoulder seasons and decreases during the summer. Annually, landscape net CO2 uptake is projected to decline by 25 ± 14 g C m-2 for a moderate and 103 ± 38 g C m-2 for a high warming scenario, potentially reversing recently observed positive net CO2 uptake trends across the boreal biome. Thus, even without moisture stress, net CO2 uptake of boreal forest-wetland landscapes may decline, and ultimately, these landscapes may turn into net CO2 sources under continued anthropogenic CO2 emissions. We conclude that NEELAND changes are more likely to be driven by direct climate change rather than by indirect land cover change impacts.


Assuntos
Dióxido de Carbono , Mudança Climática , Áreas Alagadas , Canadá , Carbono , Ecossistema , Florestas , Taiga
9.
Glob Chang Biol ; 23(6): 2413-2427, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27689625

RESUMO

At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH4 ) emissions. Here, we quantify the thaw-induced increase in CH4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO2 ) exchange. Using nested wetland and landscape eddy covariance net CH4 flux measurements in combination with flux footprint modeling, we find that landscape CH4 emissions increase with increasing wetland-to-forest ratio. Landscape CH4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH4 emission of ~13 g CH4  m-2 is the dominating contribution to the landscape CH4 emission of ~7 g CH4  m-2 . In contrast, forest contributions to landscape CH4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr-1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH4  m-2  yr-1 in landscape CH4 emissions. A long-term net CO2 uptake of >200 g CO2  m-2  yr-1 is required to offset the positive radiative forcing of increasing CH4 emissions until the end of the 21st century as indicated by an atmospheric CH4 and CO2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO2 flux measurements suggest a long-term net CO2 uptake between 49 and 157 g CO2  m-2  yr-1 . Thus, thaw-induced CH4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century.


Assuntos
Mudança Climática , Metano , Taiga , Áreas Alagadas , Canadá , Dióxido de Carbono , América do Norte , Solo/química
10.
Glob Chang Biol ; 22(12): 4048-4066, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27153776

RESUMO

In the sporadic permafrost zone of North America, thaw-induced boreal forest loss is leading to permafrost-free wetland expansion. These land cover changes alter landscape-scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco-physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw-induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present-day boreal forest-wetland to a hypothetical homogeneous wetland landscape could induce a near-surface cooling effect on regional air temperatures of up to 3-4 °C in late winter and 1-2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol-1 . At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw-induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends.


Assuntos
Clima , Pergelissolo , Taiga , Atmosfera , Temperatura Baixa , Territórios do Noroeste
11.
Glob Chang Biol ; 20(3): 824-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23939809

RESUMO

Much of the world's boreal forest occurs on permafrost (perennially cryotic ground). As such, changes in permafrost conditions have implications for forest function and, within the zone of discontinuous permafrost (30-80% permafrost in areal extent), distribution. Here, forested peat plateaus underlain by permafrost are elevated above the surrounding permafrost-free wetlands; as permafrost thaws, ground surface subsidence leads to waterlogging at forest margins. Within the North American subarctic, recent warming has produced rapid, widespread permafrost thaw and corresponding forest loss. Although permafrost thaw-induced forest loss provides a natural analogue to deforestation occurring in more southerly locations, we know little about how fragmentation relates to subsequent permafrost thaw and forest loss or the role of changing conditions at the edges of forested plateaus. We address these knowledge gaps by (i) examining the relationship of forest loss to the degree of fragmentation in a boreal peatland in the Northwest Territories, Canada; and (ii) quantifying associated biotic and abiotic changes occurring across forest-wetland transitions and extending into the forested plateaus (i.e., edge effects). We demonstrate that the rate of forest loss correlates positively with the degree of fragmentation as quantified by perimeter to area ratio of peat plateaus (edge : area). Changes in depth of seasonal thaw, soil moisture, and effective leaf area index (LAIe ) penetrated the plateau forests by 3-15 m. Water uptake by trees was sevenfold greater in the plateau interior than at the edges with direct implications for tree radial growth. A negative relationship existed between LAIe and soil moisture, suggesting that changes in vegetation physiological function may contribute to changing edge conditions while simultaneously being affected by these changes. Enhancing our understanding of mechanisms contributing to differential rates of permafrost thaw and associated forest loss is critical for predicting future interactions between the land surface processes and the climate system in high-latitude regions.


Assuntos
Conservação dos Recursos Naturais , Gelo , Árvores , Ecossistema , Territórios do Noroeste
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA