Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 73(1): 463-76, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169479

RESUMO

Nanotechnology has the potential to innovate the agricultural, feed and food sectors (hereinafter referred to as agri/feed/food). Applications that are marketed already include nano-encapsulated agrochemicals or nutrients, antimicrobial nanoparticles and active and intelligent food packaging. Many nano-enabled products are currently under research and development, and may enter the market in the near future. As for any other regulated product, applicants applying for market approval have to demonstrate the safe use of such new products without posing undue safety risks to the consumer and the environment. Several countries all over the world have been active in examining the appropriateness of their regulatory frameworks for dealing with nanotechnologies. As a consequence of this, different approaches have been taken in regulating nano-based products in agri/feed/food. The EU, along with Switzerland, were identified to be the only world region where nano-specific provisions have been incorporated in existing legislation, while in other regions nanomaterials are regulated more implicitly by mainly building on guidance for industry. This paper presents an overview and discusses the state of the art of different regulatory measures for nanomaterials in agri/feed/food, including legislation and guidance for safety assessment in EU and non-EU countries.


Assuntos
Qualidade de Produtos para o Consumidor/legislação & jurisprudência , Alimentos/normas , Legislação sobre Alimentos/normas , Nanoestruturas/normas , Nanotecnologia/legislação & jurisprudência , Setor Privado/legislação & jurisprudência , Agricultura/legislação & jurisprudência , Agroquímicos/normas , Animais , Anti-Infecciosos/normas , União Europeia , Embalagem de Alimentos/legislação & jurisprudência , Humanos , Medição de Risco , Segurança/legislação & jurisprudência
2.
PLoS One ; 8(9): e73736, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040048

RESUMO

Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N'-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic 'barcode', were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput 'barcode' sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.


Assuntos
Dano ao DNA , DNA Fúngico/genética , Genômica/métodos , Xenobióticos/farmacologia , Alquilantes/farmacologia , Aminoácidos Aromáticos/genética , Aminoácidos Aromáticos/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Carbamatos/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Dimetil Sulfóxido/farmacologia , Genes Fúngicos/genética , Testes de Sensibilidade Microbiana/métodos , Mutação/efeitos dos fármacos , Mutação/genética , Oxidantes/farmacologia , Fenótipo , Quinonas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Testes de Toxicidade/métodos , Triptofano/genética , Triptofano/metabolismo
3.
Lab Chip ; 13(14): 2754-63, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23661198

RESUMO

Methods to analyze the intrinsic physical properties of cells - for example, size, density, rigidity, or electrical properties - are an active area of interest in the microfluidics community. Although the physical properties of cells are determined at a fundamental level by gene expression, the relationship between the two remains exceptionally complex and poorly characterized, limiting the adoption of intrinsic separation technologies. To improve our current understanding of how a cell's genotype maps to a measurable physical characteristic and quantitatively investigate the potential of using these characteristics as biomarkers, we have developed a novel screen that combines microfluidic cell sorting with high-throughput sequencing and the haploid yeast deletion library to identify genes whose functions modulate one such characteristic - intrinsic electrical properties. Using this screen, we are able to establish a high-content electrical profile of the haploid yeast gene deletion strains. We find that individual genetic deletions can appreciably alter the electrical properties of cells, affecting ~10% of the 4432 gene deletion strains screened. Additionally, we find that gene deletions affecting electrical properties in specific ways (i.e. increasing or decreasing effective conductivity at higher or lower electric field frequencies) are strongly associated with an enriched subset of fundamental biological processes that can be traced to specific pathways and complexes. The screening approach demonstrated here and the attendant results are immediately applicable to the intrinsic separations community.


Assuntos
Separação Celular/métodos , Condutividade Elétrica , Estudo de Associação Genômica Ampla/métodos , Técnicas Analíticas Microfluídicas/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biomarcadores , Separação Celular/instrumentação , Desenho de Equipamento , Deleção de Genes , Estudo de Associação Genômica Ampla/instrumentação , Haploidia , Ponto Isoelétrico , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos , Transporte Proteico , Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA