Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 343: 126106, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34637908

RESUMO

Potato peel (PP) waste are generated in huge quantities, causing environmental pollution and health problems. Therefore, obtaining value-added products from PP is a current research challenge. In this work, novel Ca-biocomposites for phosphorus (P) removal were prepared by pyrolysis (500-800 °C) using eggshell (ES) and PP (ES/PP = 1:2 ratio by weight). ESPP-700 (pyrolyzed at 700 °C), reached a Qmax of 174.8 mg P/g, while the application of Ca-biocomposites in domestic wastewater showed 85.96% of P removal. According to the pseudo-second-order kinetic model, P adsorption was dominated by chemisorption, follows by apatite precipitation. The P solubility (62.5 wt.%) in formic acid (2.0 wt.%) and the water-soluble P (3.2 wt.%) for ESPP-700 after P adsorption, indicated that the final product would work as fertilizer for acidic soils. This is an important step in the management of agricultural wastes to implement the 3R slogan "Reduce, Reuse, Recycle" towards a circular economy.


Assuntos
Solanum tuberosum , Poluentes Químicos da Água , Adsorção , Animais , Casca de Ovo/química , Cinética , Fósforo , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA