Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 182: 106253, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37463609

RESUMO

BACKGROUND: Some of the life-threatening, food-borne, and zoonotic infections are transmitted through poultry birds. Inappropriate and irrational use of antimicrobials in the livestock industry has resulted in an increased incidence of multi-drug resistant bacteria of epidemic potentials. MATERIALS AND METHODS: The adhesion and invasion properties of 11 free-range and broiler chicken derived Helicobacterpullorum isolates were evaluated. To examine the biofilm formation of H. pullorum isolates, crystal violet assay was performed. A quantitative assay of invasion-associated genes was carried out after infecting HepG2 cells with two different representative (broiler and free-range chicken) H. pullorum isolates, using RT-PCR assay. Furthermore, we investigated the prevalence of H. pullorum, Campylobacter jejuni and Salmonella spp. in chicken caeca and oviducts to determine the possibility of trans-ovarian transmission. RESULTS: All H. pullorum isolates adhered to HepG2 cells significantly but a notable difference towards their invasion potential was observed between free-range and broiler chicken isolates wherein broiler isolates were found to be more invasive compared to free-range isolates. Furthermore, cdtB, flhA and flaB genes of H. pullorum were upregulated post infection of HepG2 cells, in broiler chicken isolates compared to free-range chicken isolates. Moreover, all isolates of H. pullorum were found to form biofilm on the liquid-air interface of the glass coverslips and sidewalls of the wells with similar propensities. Despite presence of H. pullorum and C. jejuni in high concentrations in the caecum, they were completely absent in oviduct samples, thus ruling out the possibility of vertical transmission of these bacterial species. In contrast, Salmonella spp. was found to be present in a significant proportion in the oviduct samples of egg-laying hens suggesting its vertical transmission. CONCLUSIONS: Our findings suggest that H. pullorum, an emerging multi-drug resistant (MDR) pathogen could be transmitted from poultry sources to humans. In addition to this, its strong functional similarity with C. jejuni provides a firm basis for H. pullorum to be an emerging food-associated, MDR pathogenic bacterium that could pose risk to public health.


Assuntos
Campylobacter jejuni , Helicobacter , Doenças das Aves Domésticas , Animais , Feminino , Humanos , Galinhas/microbiologia , Aves Domésticas/microbiologia , Helicobacter/genética , Campylobacter jejuni/genética , Doenças das Aves Domésticas/microbiologia , Antibacterianos/farmacologia
2.
Gut Pathog ; 13(1): 57, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593031

RESUMO

BACKGROUND: The burden of Helicobacter pylori-induced gastric cancer varies based on predominant H. pylori population in various geographical regions. Vietnam is a high H. pylori burden country with the highest age-standardized incidence rate of gastric cancer (16.3 cases/100,000 for both sexes) in Southeast Asia, despite this data on the H. pylori population is scanty. We examined the global context of the endemic H. pylori population in Vietnam and present a contextual and comparative genomics analysis of 83 H. pylori isolates from patients in Vietnam. RESULTS: There are at least two major H. pylori populations are circulating in symptomatic Vietnamese patients. The majority of the isolates (~ 80%, 66/83) belong to the hspEastAsia and the remaining belong to hpEurope population (~ 20%, 17/83). In total, 66 isolates (66/83) were cagA positive, 64 were hspEastAsia isolates and two were hpEurope isolates. Examination of the second repeat region revealed that most of the cagA genes were ABD type (63/66; 61 were hspEastAsia isolates and two were hpEurope isolates). The remaining three isolates (all from hspEastAsia isolates) were ABC or ABCC types. We also detected that 4.5% (3/66) cagA gene from hspEastAsia isolates contained EPIYA-like sequences, ESIYA at EPIYA-B segments. Analysis of the vacA allelic type revealed 98.8% (82/83) and 41% (34/83) of the strains harboured the s1 and m1 allelic variant, respectively; 34/83 carried both s1m1 alleles. The most frequent genotypes among the cagA positive isolates were vacA s1m1/cagA + and vacA s1m2/cagA + , accounting for 51.5% (34/66) and 48.5% (32/66) of the isolates, respectively. CONCLUSIONS: There are two predominant lineages of H. pylori circulating in Vietnam; most of the isolates belong to the hspEastAsia population. The hpEurope population is further divided into two smaller clusters.

3.
mBio ; 12(1)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653937

RESUMO

The genotoxin colibactin is a secondary metabolite produced by the polyketide synthase (pks) island harbored by extraintestinal pathogenic E. coli (ExPEC) and other members of the Enterobacteriaceae that has been increasingly reported to have critical implications in human health. The present study entails a high-throughput whole-genome comparison and phylogenetic analysis of such pathogenic E. coli isolates to gain insights into the patterns of distribution, horizontal transmission, and evolution of the island. For the current study, 23 pks-positive ExPEC genomes were newly sequenced, and their virulome and resistome profiles indicated a preponderance of virulence encoding genes and a reduced number of genes for antimicrobial resistance. In addition, 4,090 E. coli genomes from the public domain were also analyzed for large-scale screening for pks-positive genomes, out of which a total of 530 pks-positive genomes were studied to understand the subtype-based distribution pattern(s). The pks island showed a significant association with the B2 phylogroup (82.2%) and a high prevalence in sequence type 73 (ST73; n = 179) and ST95 (n = 110) and the O6:H1 (n = 110) serotype. Maximum-likelihood (ML) phylogeny of the core genome and intergenic regions (IGRs) of the ST95 model data set, which was selected because it had both pks-positive and pks-negative genomes, displayed clustering in relation to their carriage of the pks island. Prevalence patterns of genes encoding RM systems in the pks-positive and pks-negative genomes were also analyzed to determine their potential role in pks island acquisition and the maintenance capability of the genomes. Further, the maximum-likelihood phylogeny based on the core genome and pks island sequences from 247 genomes with an intact pks island demonstrated horizontal gene transfer of the island across sequence types and serotypes, with few exceptions. This study vitally contributes to understanding of the lineages and subtypes that have a higher propensity to harbor the pks island-encoded genotoxin with possible clinical implications.IMPORTANCE Extraintestinal pathologies caused by highly virulent strains of E. coli amount to clinical implications with high morbidity and mortality rates. Pathogenic E. coli strains are evolving with the horizontal acquisition of mobile genetic elements, including pathogenicity islands such as the pks island, which produces the genotoxin colibactin, resulting in severe clinical outcomes, including colorectal cancer progression. The current study encompasses high-throughput comparative genomics and phylogenetic analyses to address the questions pertaining to the acquisition and evolution pattern of the genomic island in different E. coli subtypes. It is crucial to gain insights into the distribution, transfer, and maintenance of pathogenic islands, as they harbor multiple virulence genes involved in pathogenesis and clinical implications of the infection.


Assuntos
Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/microbiologia , Evolução Molecular , Genoma Bacteriano , Ilhas Genômicas , Genômica , Biologia Computacional/métodos , DNA Intergênico , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/epidemiologia , Estudo de Associação Genômica Ampla , Fenótipo , Filogenia , Prevalência , Virulência/genética , Fatores de Virulência/genética
4.
Helicobacter ; 26(2): e12777, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33368895

RESUMO

Helicobacter pylori is a major chronic health problem, infecting more than half of the population worldwide. H. pylori infection is linked with various clinical complications ranging from gastritis to gastric cancer. The resolution of gastritis and peptic ulcer appears to be linked with the eradication of H. pylori. However, resistance to antibiotics and eradication failure rates are reaching alarmingly high levels. This calls for urgent action in finding alternate methods for H. pylori eradication. Here, we discuss the recently identified mechanism of H. pylori known as cholesterol glucosylation, mediated by the enzyme cholesterol-α-glucosyltransferase, encoded by the gene cgt. Cholesterol glucosylation serves several functions that include promoting immune evasion, enhancing antibiotic resistance, maintaining the native helical morphology, and supporting functions of prominent virulence factors such as CagA and VacA. Consequently, strategies aiming at inhibition of the cholesterol glucosylation process have the potential to attenuate the potency of H. pylori infection and abrogate H. pylori immune evasion capabilities. Knockout of H. pylori cgt results in unsuccessful colonization and elimination by the host immune responses. Moreover, blocking cholesterol glucosylation can reverse antibiotic susceptibility in H. pylori. In this work, we review the main roles of cholesterol glucosylation in H. pylori and evaluate whether this mechanism can be targeted for the development of alternate methods for eradication of H. pylori infection.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Colesterol , Glucosiltransferases , Humanos
5.
Helicobacter ; 26(1): e12766, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33073485

RESUMO

Helicobacter pylori, a Gram-negative bacterium, is associated with a wide range of gastric diseases such as gastritis, duodenal ulcer, and gastric cancer. The prevalence of H pylori and risk of disease vary in different parts of the world based on the prevailing bacterial lineage. Here, we present a contextual and comparative genomics analysis of 20 clinical isolates of H pylori from patients in Bangladesh. Despite a uniform host ethnicity (Bengali), isolates were classified as being part of the HpAsia2 (50%) or HpEurope (50%) population. Out of twenty isolates, eighteen isolates were cagA positive, with two HpEurope isolates being cagA negative, three EPIYA motif patterns (AB, AB-C, and ABC-C) were observed among the cagA-positive isolates. Three vacA genotypes were observed with the s1m1i1dic1 genotype observed in 75% of isolates; the s1m2i1d1c2 and s2m2i2d2c2 genotypes were found to be 15% and 10% of isolates, respectively. The non-virulent genotypes s2m2i2d2c2 was only observed in HpEurope population isolates. Genotypic analysis of oipA gene, present in all isolates, revealed five different patterns of the CT repeat; all HpAsia2 isolates were in "ON" while 20% of HpEurope isolates were genotypically "OFF." The three blood group antigen binding adhesins encoded genes (bab genes) examined and we observed that the most common genotype was (babA/babB/-) found in eight isolates, notably six were HpAsia2 isolates. The babA gene was found in all HpAsia2 isolates but present in only half of the HpEurope isolates. In silico antibiotic susceptibility analysis revealed that 40% of the strains were multi-drug resistant. Mutations associated with resistance to metronidazole, fluoroquinolone, and clarithromycin were detected 90%, 45%, and 5%, respectively, in H pylori strain. In conclusion, it is evident that two populations of H pylori with similar antibiotic profiles are predominant in Bangladesh, and it appears that genotypically the HpAisa2 isolates are potentially more virulent than the HpEurope isolates.


Assuntos
Gastrite , Genoma Bacteriano , Infecções por Helicobacter , Helicobacter pylori , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Bangladesh , Farmacorresistência Bacteriana , Genômica , Genótipo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos
6.
mBio ; 9(6)2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482827

RESUMO

Infection of the human stomach caused by Helicobacter pylori is very common, as the pathogen colonizes more than half of the world's population. It is associated with varied outcomes of infection, such as peptic ulcer disease, gastric ulcers, and mucosa-associated lymphoid tissue lymphoma, and is generally considered a risk factor for the development of gastric adenocarcinoma. Cholesteryl glucosides (CGs) constitute a vital component of the cell wall of H. pylori and contribute to its pathogenicity and virulence. The hp0421 gene, which encodes cholesteryl-α-glucoside transferase (CGT), appears critical for the enzymatic function of integrating unique CGs into the cell wall of H. pylori, and deletion of this gene leads to depletion of CGs and their variants. Herein, we report that the deletion of hp0421 and consequent deficiency of cholesterol alter the morphology, shape, and cell wall composition of H. pylori cells, as demonstrated by high-resolution confocal microscopy and flow cytometry analyses of two different type strains of H. pylori, their isogenic knockouts as well as a reconstituted strain. Moreover, measurement of ethidium bromide (EtBr) influx by flow cytometry showed that lack of CGs increased cell wall permeability. Antimicrobial susceptibility testing revealed that the hp0421 isogenic knockout strains (Hp26695Δ421 and Hp76Δ421) were sensitive to antibiotics, such as fosfomycin, polymyxin B, colistin, tetracycline, and ciprofloxacin, in contrast to the wild-type strains that were resistant to the above antibiotics and tended to form denser biofilms. Lipid profile analysis of both Hp76 and Hp76Δ421 strains showed an aberrant profile of lipopolysaccharides (LPS) in the Hp76Δ421 strain. Taken together, we herein provide a set of mechanistic evidences to demonstrate that CGs play critical roles in the maintenance of the typical spiral morphology of H. pylori and its cell wall integrity, and any alteration in CG content affects the characteristic morphological features and renders the H. pylori susceptible to various antibiotics.IMPORTANCEHelicobacter pylori is an important cause of chronic gastritis leading to peptic ulcer and is a major risk factor for gastric malignancies. Failure in the eradication of H. pylori infection and increasing antibiotic resistance are two major problems in preventing H. pylori colonization. Hence, a deeper understanding of the bacterial survival strategies is needed to tackle the increasing burden of H. pylori infection by an appropriate intervention. Our study demonstrated that the lack of cholesteryl glucosides (CGs) remarkably altered the morphology of H. pylori and increased permeability of the bacterial cell wall. Further, this study highlighted the substantial role of CGs in maintaining the typical H. pylori morphology that is essential for retaining its pathogenic potential. We also demonstrated that the loss of CGs in H. pylori renders the bacterium susceptible to different antibiotics.


Assuntos
Parede Celular/metabolismo , Colesterol/análogos & derivados , Glucosiltransferases/metabolismo , Helicobacter pylori/citologia , Helicobacter pylori/enzimologia , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Colesterol/metabolismo , Citometria de Fluxo , Deleção de Genes , Teste de Complementação Genética , Glucosiltransferases/genética , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Testes de Sensibilidade Microbiana , Microscopia Confocal , Permeabilidade
7.
Appl Environ Microbiol ; 83(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815276

RESUMO

Some life-threatening, foodborne, and zoonotic infections are transmitted through poultry birds. Inappropriate and indiscriminate use of antimicrobials in the livestock industry has led to an increased prevalence of multidrug-resistant bacteria with epidemic potential. Here, we present a functional molecular epidemiological analysis entailing the phenotypic and whole-genome sequence-based characterization of 11 H. pullorum isolates from broiler and free-range chickens sampled from retail wet markets in Hyderabad City, India. Antimicrobial susceptibility tests revealed all of the isolates to be resistant to multiple antibiotic classes such as fluoroquinolones, cephalosporins, sulfonamides, and macrolides. The isolates were also found to be extended-spectrum ß-lactamase producers and were even resistant to clavulanic acid. Whole-genome sequencing and comparative genomic analysis of these isolates revealed the presence of five or six well-characterized antimicrobial resistance genes, including those encoding a resistance-nodulation-division efflux pump(s). Phylogenetic analysis combined with pan-genome analysis revealed a remarkable degree of genetic diversity among the isolates from free-range chickens; in contrast, a high degree of genetic similarity was observed among broiler chicken isolates. Comparative genomic analysis of all publicly available H. pullorum genomes, including our isolates (n = 16), together with the genomes of 17 other Helicobacter species, revealed a high number (8,560) of H. pullorum-specific protein-encoding genes, with an average of 535 such genes per isolate. In silico virulence screening identified 182 important virulence genes and also revealed high strain-specific gene content in isolates from free-range chickens (average, 34) compared to broiler chicken isolates. A significant prevalence of prophages (ranging from 1 to 9) and a significant presence of genomic islands (0 to 4) were observed in free-range and broiler chicken isolates. Taken together, these observations provide significant baseline data for functional molecular infection epidemiology of nonpyloric Helicobacter species such as H. pullorum by unraveling their evolution in chickens and their possible zoonotic transmission to humans. IMPORTANCE: Globally, the poultry industry is expanding with an ever-growing consumer base for chicken meat. Given this, food-associated transmission of multidrug-resistant bacteria represents an important health care issue. Our study involves a critical baseline approach directed at genome sequence-based epidemiology and transmission dynamics of H. pullorum, a poultry pathogen having established zoonotic potential. We believe our studies would facilitate the development of surveillance systems that ensure the safety of food for humans and guide public health policies related to the use of antibiotics in animal feed in countries such as India. We sequenced 11 new genomes of H. pullorum as a part of this study. These genomes would provide much value in addition to the ongoing comparative genomic studies of helicobacters.


Assuntos
Galinhas/microbiologia , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Infecções por Helicobacter/veterinária , Helicobacter/genética , Doenças das Aves Domésticas/microbiologia , Animais , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Fluoroquinolonas/farmacologia , Microbiologia de Alimentos , Ilhas Genômicas , Helicobacter/efeitos dos fármacos , Helicobacter/isolamento & purificação , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia/epidemiologia , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Filogenia , Doenças das Aves Domésticas/epidemiologia , Prófagos/genética , Prófagos/isolamento & purificação , beta-Lactamases/biossíntese , beta-Lactamases/genética
8.
Int J Biol Macromol ; 81: 754-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26358551

RESUMO

Understanding surfactants induced changes on protein folding, aggregation, and fibrillation has a lot of implications in their laboratory and industrial applications. The effect of an anionic surfactant, sodium dodecyl sulphate (SDS), on fibrillation of an acidic protein α-lactalbumin (α-LA) at neutral pH condition was investigated. SDS at lower concentrations increased the lag time by nearly two-fold whereas the fibril elongation rate was not significantly altered. At the concentrations above 0.2mM, SDS lengthened the lag time by many-fold (∼60), but fibril elongation was accelerated by 3-6 fold. At the concentrations above 2mM, SDS inhibited α-LA fibrillation and led it to the formation of amorphous aggregates. These results were compared with the effect of SDS on the fibrillation of lysozyme, a basic protein. Though fibril inhibition was observed on both the proteins at the micellar concentrations of SDS, there were differences in the effect on lag time and elongation rate at the lower concentrations of SDS. This suggests that the inhibition of protein fibrillation by SDS-micelles might be a common mechanism irrespective of the surface charges on protein.


Assuntos
Lactalbumina/química , Agregados Proteicos , Dodecilsulfato de Sódio/química , Concentração de Íons de Hidrogênio , Cinética , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Dobramento de Proteína , Desdobramento de Proteína , Dodecilsulfato de Sódio/farmacologia , Tensoativos/química , Tensoativos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA