Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256011

RESUMO

The aim of this work is to study the effect of platelet factors on the differentiation of mesenchymal stem cells (MSCs) to hyaline cartilage chondrocytes in a three-dimensional environment. MSCs were cultured in a microgel environment with a chondrogenic medium. The microgel consisted of microspheres that combine gelatin and platelet-rich plasma (PRP). The gelatin/PRP microdroplets were produced by emulsion. The gelatin containing the microdroplets was enzymatically gelled, retaining PRP and, just before seeding the cells, platelets were activated by adding calcium chloride so that platelet growth factors were released into the culture media but not before. Platelet activation was analyzed before activation to rule out the possibility that the gelatin cross-linking process itself activated the platelets. The gene expression of characteristic chondrogenic markers and miRNA expression were analyzed in cells cultured in a differentiation medium and significant differences were found between gelation/PRP microgels and those containing only pure gelatin. In summary, the gelatin microspheres effectively encapsulated platelets that secreted and released factors that significantly contributed to cellular chondrogenic differentiation. At the same time, the microgel constituted a 3D medium that provided the cells with adherent surfaces and the possibility of three-dimensional cell-cell contact.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Microgéis , Plasma Rico em Plaquetas , Gelatina , Condrogênese/genética
2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769254

RESUMO

The covalent functionalization of synthetic peptides allows the modification of different biomaterials (metallic, polymeric, and ceramic), which are enriched with biologically active sequences to guide cell behavior. Recently, this strategy has also been applied to decellularized biological matrices. In this study, the covalent anchorage of a synthetic peptide (REDV) to a pericardial matrix decellularized via Schiff base is realized starting from concentrated peptide solutions (10-4 M and 10-3 M). The use of a labeled peptide demonstrated that as the concentration of the working solution increased, the surface density of the anchored peptide increased as well. These data are essential to pinpointing the concentration window in which the peptide promotes the desired cellular activity. The matrices were extensively characterized by Water Contact Angle (WCA) analysis, Differential Scanning Calorimetry (DSC) analysis, geometric feature evaluation, biomechanical tests, and preliminary in vitro bioassays.


Assuntos
Peptídeos , Pericárdio , Materiais Biocompatíveis
3.
Polymers (Basel) ; 14(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36297867

RESUMO

Alginate hydrogels can be used to develop a three-dimensional environment in which various cell types can be grown. Cross-linking the alginate chains using reversible ionic bonds opens up great possibilities for the encapsulation and subsequent release of cells or drugs. However, alginate also has a drawback in that its structure is not very stable in a culture medium with cellular activity. This work explored the stability of alginate microspheres functionalised by grafting specific biomolecules onto their surface to form microgels in which biomimetic microspheres surrounded the cells in the culture, reproducing the natural microenvironment. A study was made of the stability of the microgel in different typical culture media and the formation of polyelectrolyte multilayers containing polylysine and heparin. Multiple myeloma cell proliferation in the culture was tested in a bioreactor under gentle agitation.

4.
ACS Appl Polym Mater ; 4(8): 5368-5379, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36824683

RESUMO

Poly(vinylidene fluoride) (PVDF) combined with cobalt ferrite (CFO) particles is one of the most common and effective polymeric magnetoelectric composites. Processing PVDF into its electroactive phase is a mandatory condition for featuring electroactive behavior and specific (post)processing may be needed to achieve this state, although electroactive phase crystallization is favored at processing temperatures below 60 °C. Different techniques are used to process PVDF-CFO nanocomposite structures into microspheres with high CFO dispersion, with microfluidics adding the advantages of high reproducibility, size tunability, and time and resource efficiency. In this work, magnetoelectric microspheres are produced in a one-step approach. We describe the production of high content electroactive phase PVDF and PVDF-CFO microspheres using microfluidic technology. A flow-focusing polydimethylsiloxane device is fabricated based on a 3D printed polylactic acid master, which enables the production of spherical microspheres with mean diameters ranging from 80 to 330 µm. The microspheres feature internal and external cavernous structures and good CFO distribution with an encapsulation efficacy of 80% and prove to be in the electroactive γ-phase with a mean content of 75%. The microspheres produced using this approach show suitable characteristics as active materials for tissue regeneration strategies and other piezoelectric polymer applications.

5.
Polymers (Basel) ; 13(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203144

RESUMO

Dermo-epidermal equivalents based on plasma-derived fibrin hydrogels have been extensively studied for skin engineering. However, they showed rapid degradation and contraction over time and low mechanical properties which limit their reproducibility and lifespan. In order to achieve better mechanical properties, elasticity and biological properties, we incorporated a elastin-like recombinamer (ELR) network, based on two types of ELR, one modified with azide (SKS-N3) and other with cyclooctyne (SKS-Cyclo) chemical groups at molar ratio 1:1 at three different SKS (serine-lysine-serine sequence) concentrations (1, 3, and 5 wt.%), into plasma-derived fibrin hydrogels. Our results showed a decrease in gelation time and contraction, both in the absence and presence of the encapsulated human primary fibroblasts (hFBs), higher mechanical properties and increase in elasticity when SKSs content is equal or higher than 3%. However, hFBs proliferation showed an improvement when the lowest SKS content (1 wt.%) was used but started decreasing when increasing SKS concentration at day 14 with respect to the plasma control. Proliferation of human primary keratinocytes (hKCs) seeded on top of the hybrid-plasma hydrogels containing 1 and 3% of SKS showed no differences to plasma control and an increase in hKCs proliferation was observed for hybrid-plasma hydrogels containing 5 wt.% of SKS. These promising results showed the need to achieve a balance between the reduced contraction, the better mechanical properties and biological properties and indicate the potential of using this type of hydrogel as a testing platform for pharmaceutical products and cosmetics, and future work will elucidate their potential.

6.
Bioelectrochemistry ; 134: 107536, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32335352

RESUMO

Electrical stimulation (ES) has provided enhanced chondrogenesis of mesenchymal stem cells (MSCs) cultured in micro-mass without the addition of exogenous growth factors. In this study, we demonstrate for the first time that ES of MSCs encapsulated in an injectable hyaluronic acid (HA) - gelatin (GEL) mixture enhances the chondrogenic potential of the hydrogel. Samples were stimulated for 21 days with 10 mV/cm at 60 kHz, applied for 30 min every 6 h a day. Mechanical properties of hydrogels were higher if the precursors were dissolved in Calcium-Free Krebs Ringer Buffer (G' = 1141 ± 23 Pa) compared to those diluted in culture media (G' = 213 ± 19 Pa). Cells within stimulated hydrogels were rounder (55%) than non-stimulated cultures (32%) (p = 0.005). Chondrogenic markers such as SOX-9 and aggrecan were higher in stimulated hydrogels compared to controls. The ES demonstrated that normalized content of glycosaminoglycans and collagen to DNA was slightly higher in stimulated samples. Additionally, collagen type II normalized to total collagen was 2.43 times higher in stimulated hydrogels. These findings make ES a promising tool for enhancing articular cartilage tissue engineering outcomes by combining hydrogels and MSCs.


Assuntos
Condrogênese/efeitos dos fármacos , Estimulação Elétrica , Gelatina/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Hialurônico/química , Injeções , Suínos , Fatores de Tempo
7.
Carbohydr Polym ; 197: 469-477, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30007636

RESUMO

Injectable hydrogels have emerged as promising biomaterials for tissue engineering applications. The goal of this study was to evaluate the potential of a pH-responsive chitosan-hydroxyapatite hydrogel to be used as a three-dimensional support for encapsulated mesenchymal stem cells (MSCs) osteogenic differentiation. In vitro enzymatic degradation of the hydrogel, during 28 days of incubation, in simulated physiological condiditons, was characterized by swelling measurements, molecular weight determination and SEM analysis of hydrogel microstructure. Osteogenic differentiation of encapsulated MSCs was confirmed by osteogenic Runx2, collagen type I and osteocalcin immunostaining and alkaline phosphatase quantification. The deposition of late osteogenic markers (calcium phosphates) detected by Alizarin red and von Kossa staining indicated an extracellular matrix mineralization.


Assuntos
Quitosana/farmacologia , Durapatita/farmacologia , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quitosana/administração & dosagem , Durapatita/administração & dosagem , Hidrogéis/administração & dosagem , Injeções , Peso Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Suínos
8.
J Biomed Mater Res A ; 105(6): 1684-1691, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28218494

RESUMO

Chondrogenesis of mesenchymal stem cells (MSCs) is known to be regulated by a number of environmental factors, including local oxygen levels. The hypothesis of this study is that the response of MSCs to hypoxia is dependent on the physical and chemical characteristics of the substrate used. The objective of this study was to explore how different modifications to polycaprolactone (PCL) scaffolds influenced the response of MSCs to hypoxia. PCL, PCL-hyaluronic acid (HA), and PCL-Bioglass® (BG) scaffolds were seeded with MSCs derived from bone marrow and cultured for 35 days under normoxic or low oxygen conditions, and the resulting biochemical properties of the MSC laden construct were assessed. Low oxygen tension has a positive effect over cell proliferation and macromolecules biosynthesis. Furthermore, hypoxia enhanced the distribution of collagen and glycosaminoglycans (GAGs) deposition through the scaffold. On the other hand, MSCs displayed certain material dependent responses to hypoxia. Low oxygen tension had a positive effect on cell proliferation in BG and HA scaffolds, but only a positive effect on GAGs synthesis in PCL and HA scaffolds. In conclusion, hypoxia increased cell viability and expression of chondrogenic markers but the cell response was modulated by the type of scaffold used. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1684-1691, 2017.


Assuntos
Condrogênese , Células-Tronco Mesenquimais/metabolismo , Oxigênio/metabolismo , Poliésteres/química , Alicerces Teciduais/química , Animais , Hipóxia Celular , Células Cultivadas , Cerâmica/química , Ácido Hialurônico/análogos & derivados , Células-Tronco Mesenquimais/citologia , Suínos , Engenharia Tecidual
9.
Macromol Biosci ; 15(2): 262-74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25303745

RESUMO

A novel approach to reinforce polymer porous membranes is presented. In the prepared hybrid materials, the inorganic phase of silica is synthesized in-situ and inside the pores of aminolyzed polylactic acid (PLA) membranes by sol-gel reactions using tetraethylorthosilicate (TEOS) and glycidoxypropyltrimethoxysilane (GPTMS) as precursors. The hybrid materials present a porous structure with a silica layer covering the walls of the pores while GPTMS serves also as coupling agent between the organic and inorganic phase. The adjustment of silica precursors ratio allows the modulation of the thermomechanical properties. Culture of mesenchymal stem cells on these supports in osteogenic medium shows the expression of characteristic osteoblastic markers and the mineralization of the extracellular matrix.


Assuntos
Diferenciação Celular/fisiologia , Ácido Láctico/química , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Polímeros/química , Dióxido de Silício/química , Alicerces Teciduais/química , Animais , Antraquinonas , Compostos Azo , Células Cultivadas , Cromatografia em Gel , Microscopia Eletrônica de Varredura , Transição de Fase , Poliésteres , Porosidade , Silanos , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos
10.
J Mater Sci Mater Med ; 24(5): 1293-308, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23417519

RESUMO

The aim of this work is to compare the effect of hydroxyapatite (HAp) or bioglass (BG) nanoparticles in a polycaprolactone composite scaffold aimed to bone regeneration. To allow a comparison of the influence of both types of fillers, scaffolds made of PCL or composites containing up to 20 % by weight HAp or BG were obtained. Scaffolds showed acceptable mechanical properties for its use and high interconnected porosity apt for cellular colonization. To study the effect of the different materials on pre-osteoblast cells differentiation, samples with 5 % mineral reinforcement, were cultured for up to 28 days in osteogenic medium. Cells proliferated in all scaffolds. Nevertheless, differentiation levels for the selected markers were higher in pure PCL scaffolds than in the composites; inclusion of bioactive particles showed no positive effects on cell differentiation. In osteogenic culture conditions, the presence of bioactive particles is thus not necessary in order to observe good differentiation.


Assuntos
Osso e Ossos , Cerâmica/química , Durapatita/química , Poliésteres/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Animais , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Células Cultivadas , Cerâmica/síntese química , Cerâmica/farmacologia , Força Compressiva , Durapatita/farmacologia , Módulo de Elasticidade , Teste de Materiais , Camundongos , Nanocompostos/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Poliésteres/farmacologia , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA