Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Alemão | MEDLINE | ID: mdl-36525037

RESUMO

The new authorisation procedure for clinical trials on medicinal products according to Regulation (EU) No 536/2014 (Clinical Trial Regulation - CTR) became applicable in the European Union and the European Economic Area on 31 January 2022. All involved parties communicate digitally via a specially programmed IT system, the Clinical Trial Information System (CTIS), provided by the European Medicines Agency (EMA). This article highlights the cooperation between sponsors and Contract Research Organisations (CROs) when applying the CTR and CTIS.First experiences and observed trends are described focusing on user administration in CTIS and on activities related to the protection of personal data and commercially confidential information (CCI) when clinical trials are published. Challenges for CROs are multifaceted and are discussed from different angles. For example, it is necessary for CROs to temporarily maintain a Quality Management System that serves both "systems": clinical trials under the EU-Directive 2001/20 as well as under the CTR. CTR and CTIS offer not only new tasks for CROs; they often become advisors for sponsors on the basis of their extensive experience, for example, regarding the cooperation model between sponsors and CROs and/or the strategic model for submission of a clinical trial. The article concludes with a look into possible future sponsor outsourcing strategies.


Assuntos
Ensaios Clínicos como Assunto , Preparações Farmacêuticas , União Europeia , Alemanha , Ensaios Clínicos como Assunto/legislação & jurisprudência
2.
Eur J Pharm Biopharm ; 149: 121-134, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32035970

RESUMO

Over the years, the performance of the liposomal formulations of temoporfin, Foslip® and Fospeg®, was investigated in a broad array of cell-based assays and preclinical animal models. So far, little attention has been paid to the influence of drug release and liposomal stability on the plasma concentration-time profile. The drug release is a key attribute which impacts product quality and the in vivo efficacy of nanocarrier formulations. In the present approach, the in vitro drug release and the drug-protein transfer of Foslip® and Fospeg® was determined using the dispersion releaser technology. To analyze the stability of both formulations in physiological fluids, nanoparticle tracking analysis was applied. A comparable drug release behavior and a high physical stability with a vesicle size of approximately 92 ± 2 nm for Foslip® and at 111 ± 5 nm for Fospeg® were measured. The development of a novel hybrid in silico model resulted in an optimal representation of the in vivo data. Based on the information available for previous formulations, the model enabled a prediction of the performance of Foslip® in humans. To verify the simulations, plasma concentration-time profiles of a phase I clinical trial were used. An absolute average fold error of 1.4 was achieved. Moreover, a deconvolution of the pharmacokinetic profile into different fractions relevant for the in vivo efficacy and safety was achieved. While the total plasma concentration reached a cmax of 2298 ng/mL after 0.72 h, the monomolecular drug accounted for a small fraction of the photosensitizer with a cmax of 321 ng/mL only.


Assuntos
Simulação por Computador , Mesoporfirinas/farmacocinética , Nanopartículas , Fármacos Fotossensibilizantes/farmacocinética , Ensaios Clínicos Fase I como Assunto , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Lipossomos , Mesoporfirinas/administração & dosagem , Tamanho da Partícula , Fármacos Fotossensibilizantes/administração & dosagem , Tecnologia Farmacêutica
3.
Photodiagnosis Photodyn Ther ; 29: 101613, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31812543

RESUMO

BACKGROUND: Singlet oxygen is known to be the main mediator of the photodynamic effect. The kinetics of its generation and deactivation allows for insights in the microenvironment and efficacy of the photodynamic effect. Therefore, it is highly desirable to perform direct and time resolved measurements of singlet molecular oxygen (1O2) as well as data analysis during the therapy. METHODS: In this work, tumors grown on the CAM of chicken embryos as well as blood vessels were scanned after injection of the photosensitizer Foslip®, yielding time resolved singlet molecular oxygen luminescence. Using a custom-made trifurcated fiber, it is possible to simultaneously detect time resolved NIR luminescence as well as spectrally resolved UV/VIS fluorescence. RESULTS: After photosensitizer application the singlet oxygen luminescence kinetics for tumors grown on the CAM of chicken embryos as well as for mixed venous and arterialized blood were recorded. Data was analyzed by traditional fitting as well as a novel and robust approach, reducing the time resolved data to a a meaningful minimum. Both approaches show the differences between blood of different oxygen saturation as well as tumor tissue. CONCLUSIONS: This work shows for the first time the possibility of deducing the oxygen content during photodynamic therapy by measuring singlet oxygen kinetics in tissue. If more oxygen is consumed - due to chemical quenching during PDT - than is subsequently diffused, oxygen depletion occurs, resulting in inefficiency of the photodynamic effect. These results represent a major step towards live monitoring of therapy success and thus towards the possibility of direct control of PDT efficiency in real time.


Assuntos
Fotoquimioterapia , Oxigênio Singlete , Animais , Embrião de Galinha , Medições Luminescentes , Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
4.
Theranostics ; 9(19): 5444-5463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534496

RESUMO

PPARγ is a pharmacological target in inflammatory and metabolic diseases. Upon agonistic treatment or following antagonism, binding of co-factors is altered, which consequently affects PPARγ-dependent transactivation as well as its DNA-independent properties. Therefore, establishing techniques to characterize these interactions is an important issue in living cells. Methods: Using the FRET pair Clover/mRuby2, we set up a flow cytometry-based FRET assay by analyzing PPARγ1 binding to its heterodimerization partner RXRα. Analyses of PPARγ-reporter and co-localization studies by laser-scanning microscopy validated this system. Refining the system, we created a new readout to distinguish strong from weak interactions, focusing on PPARγ-binding to the co-repressor N-CoR2. Results: We observed high FRET in cells expressing Clover-PPARγ1 and mRuby2-RXRα, but no FRET when cells express a mRuby2-RXRα deletion mutant, lacking the PPARγ interaction domain. Focusing on the co-repressor N-CoR2, we identified in HEK293T cells the new splice variant N-CoR2-ΔID1-exon. Overexpressing this isoform tagged with mRuby2, revealed no binding to Clover-PPARγ1, nor in murine J774A.1 macrophages. In HEK293T cells, binding was even lower in comparison to N-CoR2 constructs in which domains established to mediate interaction with PPARγ binding are deleted. These data suggest a possible role of N-CoR2-ΔID1-exon as a dominant negative variant. Because binding to N-CoR2-mRuby2 was not altered following activation or antagonism of Clover-PPARγ1, we determined the effect of pharmacological treatment on FRET intensity. Therefore, we calculated flow cytometry-based FRET efficiencies based on our flow cytometry data. As with PPARγ antagonism, PPARγ agonist treatment did not prevent binding of N-CoR2. Conclusion: Our system allows the close determination of protein-protein interactions with a special focus on binding intensity, allowing this system to characterize the role of protein domains as well as the effect of pharmacological agents on protein-protein interactions.


Assuntos
Citometria de Fluxo/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , PPAR gama/metabolismo , Animais , Dimerização , Células HEK293 , Humanos , Camundongos , Correpressor 1 de Receptor Nuclear/química , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , PPAR gama/química , PPAR gama/genética , Ligação Proteica , Domínios Proteicos , Receptor X Retinoide alfa/química , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo
5.
Photochem Photobiol Sci ; 18(10): 2374-2380, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31380867

RESUMO

Mosquitoes are carriers of dangerous infectious disease pathogens all over the world. Owing to travelling and global warming, tropical disease-carrying species such as Aedes, Anopheles and Culex spread beyond tropical and subtropical zones, even to Europe. The aim of this study is to investigate the potential of photodynamic agents to combat mosquito larvae. Three different photosensitizers were tested on Chaoborus sp. larvae: TMPyP and TPPS as antimicrobial photosensitizers, and mTHPC as a PDT drug against eukaryotic animal and human cells. Chaoborus sp. is a commercially available harmless species developing translucent larvae similar to the larvae of Aedes, Anopheles and Culex. The uptake of photosensitizers by the larvae was tested by fluorescence microscopy. All tested photosensitizers were observed in the intestinal tract of the living larvae, and none of the photosensitizers was found in the larval tissues. In phototoxicity tests, mTHPC and TPPS did not have any effect on the larvae, while TMPyP killed the larvae efficiently. TPPS is an antimicrobial photosensitizer, mainly phototoxic to Gram-positive bacteria. TMPyP is well known as an efficient photosensitizer against Gram-negative bacteria like most species of the intestinal flora. From this result, we conclude that the photodynamic inactivation of the intestinal flora leads to the death of mosquito larvae. The feasibility of mosquito larvae control by photodynamic inactivation of their intestinal flora instead of the direct killing of the larvae is a promising alternative to other highly toxic insecticides. Compared to insecticides and other biochemical toxins, photosensitizers are not dark toxic. No resistance against photosensitizers is known so far. Thus, the dilution of the active substances by being distributed in the environment, which promotes the development of resistance in biocides of all kinds, does not pose danger. Thus, it reduces the potential side effects on environment and human health.


Assuntos
Aedes/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Aedes/crescimento & desenvolvimento , Animais , Intestinos/efeitos dos fármacos , Larva/efeitos dos fármacos , Controle de Mosquitos , Porfirinas/farmacologia
6.
J Control Release ; 308: 57-70, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31247282

RESUMO

Foscan®, a formulation comprising temoporfin dissolved in a mixture of ethanol and propylene glycol, has been approved in Europe for palliative photodynamic therapy of squamous cell carcinoma of the head and neck. During clinical and preclinical studies it was observed that considering the administration route, the drug presents a rather atypical plasma profile as plasma concentration peaks delayed. Possible explanations, as for example the formation of a drug depot or aggregation after intravenous administration, are discussed in current literature. In the present study an advanced in silico model was developed and evaluated for the detailed description of Foscan® pharmacokinetics. Therefore, in vitro release data obtained from experiments with the dispersion releaser technology investigating dissolution pressures of various release media on the drug as well as in vivo data obtained from a clinical study were included into the in silico models. Furthermore, precipitation experiments were performed in presence of biorelevant media and precipitates were analyzed by nanoparticle tracking analysis. Size analysis and particle fraction were also incorporated in this model and a sensitivity analysis was performed. An optimal description of the in vivo situation based on in vitro release and particle characterization data was achieved, as demonstrated by an absolute average fold error of 1.21. This in vitro-in vivo correlation provides an explanation for the pharmacokinetics of Foscan® in humans.


Assuntos
Antineoplásicos/administração & dosagem , Simulação por Computador , Mesoporfirinas/administração & dosagem , Nanopartículas , Antineoplásicos/farmacocinética , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Etanol/química , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Mesoporfirinas/farmacocinética , Tamanho da Partícula , Propilenoglicol/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Distribuição Tecidual
7.
Photochem Photobiol Sci ; 18(6): 1304-1314, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30994640

RESUMO

Real-time surveillance of photodynamic therapy (PDT) has been desired by the research community for a long time. The impact of the treatment is encoded in the phosphorescence kinetics of its main mediator: singlet oxygen. We report successful in vivo measurements of these weak kinetics through the skin of living mice after systemic drug application. Using special high transmission optics centered around 1200, 1270 and 1340 nm, singlet oxygen phosphorescence can be clearly discriminated from other signals. N-(2-Hydroxypropyl)methacrylamide copolymers conjugated with pyropheophorbide-a exhibit highly selective accumulation in tumors. Signals of this drug in tumors were compared to those in normal tissue. In both places, the major part of the signal could be identified as arising from drug still circulating in the bloodstream. Despite high concentrations of extravasated drug in the tumors due to the EPR effect, nearly no signal could be detected from these photosensitizers in vivo, contradicting in vitro experiments. We propose that the reason for this discrepancy is oxygen depletion in tumor tissue in vivo, even at moderate (at PDT scale) illumination intensities, soon after the start of the illumination. These results underline the importance of singlet oxygen surveillance during PDT treatment.


Assuntos
Acrilamidas/farmacologia , Antineoplásicos/farmacologia , Hipóxia , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/análise , Acrilamidas/química , Animais , Antineoplásicos/química , Relação Dose-Resposta a Droga , Cinética , Luminescência , Camundongos , Estrutura Molecular , Neoplasias/metabolismo , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/metabolismo , Relação Estrutura-Atividade
8.
Biochim Biophys Acta Biomembr ; 1861(4): 879-886, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30716292

RESUMO

The interactions between oxygen and lipid membranes play fundamental roles in basic biological processes (e.g., cellular respiration). Obviously, membrane oxidation is expected to be critically dependent on the distribution and concentration of oxygen in the membrane. Here, we combined theoretical and experimental methods to investigate oxygen partition and distribution in lipid membranes of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in a temperature range between 298 and 323 K, specifically focusing on the changes caused by the lipid phase and phase transition. Even though oxygen is known to be more concentrated in the center of fluid phase membranes than on the headgroup regions, the distribution profile of oxygen inside gel-phase bilayers remained to be determined. Molecular dynamics simulations now show that the distribution of oxygen inside DPPC bilayers dramatically changes upon crossing the main transition temperature, with oxygen being nearly depleted halfway from the headgroups to the membrane center below the transition temperature. In a parallel approach, singlet oxygen luminescence emission measurements employing the photosensitizer Pheophorbide-a (Pheo) confirmed the differences in oxygen distribution and concentration profiles between gel- and fluid-phase membranes, revealing changes in the microenvironment of the embedded photosensitizer. Our results also reveal that excited triplet state lifetime, as it can be determined from the singlet oxygen luminescence kinetics, is a useful probe to assess oxygen distribution in lipid membranes with distinct lipid compositions.


Assuntos
Bicamadas Lipídicas/química , Modelos Químicos , Simulação de Dinâmica Molecular , Oxigênio/química , Fosfatidilcolinas/química , Cinética
9.
Photodiagnosis Photodyn Ther ; 24: 358-365, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30399456

RESUMO

Onychomycosis is a fungal nail infection caused primarily by the dermatophytes Trichophyton rubrum and Trichophyton interdigitale or, less frequently, by molds like Aspergillus spp. and Scopulariopsis brevicaulis. Photodynamic treatment of onychomycosis is considered a promising future therapy to overcome the frequent failure of currently used antifungals. In this study, we tested the potential of three photosensitizers for photodynamic inactivation of the onychomycosis causing pathogens T. rubrum, T. interdigitale and S. brevicaulis. Photosensitizers used are 10,15,20-Tetrakis(1-methylpyridinium-4-yl) porphyrintetra(p-toluenesulfonate) (TMPyP), 5,10,15-tris-(1-methylpyridinium-2-yl)corrolato-(trans-dihydroxo)phosphorus(V) (PCor+) and 2',4',5',7'-tetrabromo-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one (Eosin Y). The phototoxic effects caused by the cationic photosensitizers (PCor+ and TMPyP) were tested on suspension cultures of spores as well as on fungi during growth on surfaces where both photosensitizers cause high phototoxicity. The anionic Eosin Y was tested on surface-growing fungi only and induces remarkable phototoxic effects on dermatophytes and molds. In all cases, no spore regrowth was detected after PDI. This study is considered a first step towards successful and cost efficient treatment of onychomycosis.


Assuntos
Onicomicose/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Arthrodermataceae/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Amarelo de Eosina-(YS)/farmacologia , Fungos/efeitos dos fármacos , Onicomicose/microbiologia , Porfirinas/farmacologia , Scopulariopsis/efeitos dos fármacos , Trichophyton/efeitos dos fármacos
10.
Photochem Photobiol Sci ; 17(10): 1346-1354, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141813

RESUMO

Polymer membranes are powerful filtration tools in medicine and water treatment. Their efficiency and operational lifetime is limited by biofouling caused by microorganisms. This study describes the development of photodynamical active antimicrobial polymer membranes in a one-pot functionalization step using a well-known photosensitizer (PS). Commercially available polyethersulfone (PES) membranes for microfiltration were doped with the polycationic PS TMPyP using electron beam irradiation. These membranes were characterized in terms of binding stability and quantification of the PS and membrane morphology. Furthermore, the photodynamic ability was verified by time resolved singlet oxygen luminescence scans and successfully tested against the Gram-negative bacterium E. coli under low dose white light illumination resulting in the reduction in cell survival of 6 log10 units. Finally, in preliminarily experiments the photodynamic action against the Gram-positive bacteria M. luteus and the Gram-negative P. fluorescence and the mold C. cladosporioides was demonstrated. These promising results show the high photodynamic potential of electron beam functionalization of PES membranes with TMPyP. It preserves the photodynamic abilities of the immobilized PS resulting in efficient photodynamic inactivation of bacteria and mold on the membrane surface. The uprising worldwide spread of antibiotic resistant bacteria makes the development of new antibacterial strategies an inevitable challenge. The photodynamic inactivation of bacteria and its adaptation for antimicrobial surfaces, e.g. filtration membranes for water treatment, displays many advantages in terms of a wide application range, low mutagenic potential and environmental compatibility.


Assuntos
Anti-Infecciosos/farmacologia , Membranas Artificiais , Fármacos Fotossensibilizantes/farmacologia , Polímeros/farmacologia , Porfirinas/farmacologia , Sulfonas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Escherichia coli/efeitos da radiação , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Fungos/efeitos dos fármacos , Humanos , Fármacos Fotossensibilizantes/química , Polímeros/química , Porfirinas/química , Sulfonas/química
11.
Photodiagnosis Photodyn Ther ; 23: 325-330, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30026074

RESUMO

BACKGROUND: Direct singlet molecular oxygen detection is known to be a valuable tool for understanding photodynamic action. It could become useful for optimizing illumination schedules in photodynamic therapy. The method of time resolved singlet molecular oxygen luminescence detection can give insights into generation of singlet oxygen and its interaction with the environment and therefore possibly allows monitoring the treatments efficacy. Due to high requirements for sensitivity as well as time resolution it has not yet been used in situ. The latest improvements in the detection system make in vivo time resolved singlet molecular oxygen luminescence detection possible. METHODS: In this work, blood vessels in the chicken embryo CAM-model were scanned after injection of the photosensitizer Foslip®, yielding time resolved singlet molecular oxygen luminescence. A custom-made trifurcated fiber in combination with a dye laser, a photomultiplier tube and a fiber spectrometer was utilized for simultaneous excitation, singlet molecular oxygen luminescence and photosensitizer fluorescence detection. RESULTS: Singlet oxygen luminescence kinetics for mixed venous and arterialized blood in chicken embryos using the CAM-model were recorded. The data analysis resulted in two distinct and distinguishable photosensitizer triplet lifetimes corresponding to the high and low oxygen partial pressures in the oxygen-rich arterialized blood and oxygen-poor mixed venous blood. CONCLUSIONS: The sensitivity of direct singlet molecular oxygen luminescence detection to different oxygen partial pressures could be shown in vivo. Therefore, this study is a first step towards optimizing the illumination conditions of photodynamic treatment in situ by real time monitoring of the oxygen partial pressure within the target tissue.


Assuntos
Oxigênio/metabolismo , Fármacos Fotossensibilizantes/farmacocinética , Oxigênio Singlete/análise , Oxigênio Singlete/metabolismo , Animais , Embrião de Galinha , Lasers de Corante , Lasers de Estado Sólido , Mesoporfirinas , Fotoquimioterapia/métodos
12.
J Photochem Photobiol B ; 178: 219-227, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29156350

RESUMO

Photodynamic inactivation (PDI) of bacteria may play a major role in facing the challenge of the ever expanding antibiotic resistances. Here we report about the direct correlation of singlet oxygen luminescence kinetics and phototoxicity in E. coli cell suspension under PDI using the widely applied cationic photosensitizer TMPyP. Through direct access to the microenvironment, the time resolved investigation of singlet oxygen luminescence plays a key role in understanding the photosensitization mechanism and inactivation pathway. Using the homemade set-up for highly sensitive time resolved singlet oxygen luminescence detection, we show that the cationic TMPyP is localized predominantly outside the bacterial cells but in their immediate vicinity prior to photodynamic inactivation. Throughout following light exposure, a clear change in singlet oxygen kinetics indicates a redistribution of photosensitizer molecules to at least one additional microenvironment. We found the signal kinetics mirrored in cell viability measurements of equally treated samples from same overnight cultures conducted in parallel: A significant drop in cell viability of the illuminated samples and stationary viability of dark controls. Thus, for the system investigated in this work - a Gram-negative model bacteria and a well-known PS for its PDI - singlet oxygen kinetics correlates with phototoxicity. This finding suggests that it is well possible to evaluate PDI efficiency directly via time resolved singlet oxygen detection.


Assuntos
Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/toxicidade , Oxigênio Singlete/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Cinética , Luz , Fármacos Fotossensibilizantes/química , Porfirinas/química , Porfirinas/toxicidade , Oxigênio Singlete/química , Água/química
13.
J Photochem Photobiol B ; 178: 606-613, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29277007

RESUMO

A treatment of onychomycosis using the photodynamic effect would be a favorable alternative to currently used antimycotic drugs. This study should be considered as a first step towards development and control of an efficient photodynamic inactivation of onychomycosis causative pathogens. Here, we evaluate the usage of time-resolved 2D singlet oxygen luminescence detection in combination with 2D fluorescence scanning as a tool to understand the behavior of the photosensitizer when applied to fungi on Petri dishes. To investigate the interaction of photosensitizer with fungi in various concentrations and in different stages of live, a photodynamic inactivation was avoided by keeping the samples in darkness. Scans of singlet oxygen luminescence and photosensitizer fluorescence were performed over a period of 24days. Two different photosensitizer, a cationic porphyrin and cationic corrole and two fungi strains, the dermatophyte Trichophyton rubrum and the mold Scopulariopsis brevicaulis, were investigated in this study. The two-dimensional correlation of photosensitizer fluorescence and singlet oxygen luminescence revealed differences in the diffusion of both photosensitizer. Even though the singlet oxygen luminescence was quenched with increasing growth of fungi, it was found that the kinetics of singlet oxygen luminescence could be detected on Petri dishes for both photosensitizers and both fungi strains for up to seven days.


Assuntos
Medições Luminescentes , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Cinética , Luz , Fármacos Fotossensibilizantes/toxicidade , Porfirinas/química , Porfirinas/toxicidade , Scopulariopsis/efeitos dos fármacos , Scopulariopsis/efeitos da radiação , Oxigênio Singlete/metabolismo , Trichophyton/efeitos dos fármacos , Trichophyton/efeitos da radiação
14.
Photochem Photobiol ; 93(5): 1259-1268, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28391637

RESUMO

Pointsource photodynamic therapy (PSPDT) is a newly developed fiber optic method aimed at the delivery of photosensitizer, light and oxygen to a diseased site. Because of a need for developing photosensitizers with desirable properties for PSPDT, we have carried out a synthetic, photophysical and phototoxicity study on a series of PEGylated sensitizers. Chlorin and pheophorbide sensitizers were readily amenable to our synthetic PEGylation strategy to reach triPEG and hexaPEG galloyl pheophorbides and mono-, di-, triPEG chlorins. On screening these PEG sensitizers, we found that increasing the number of PEG groups, except for hexaPEGylation, increases phototoxicity. We found that three PEG groups but not less or more were optimal. Of the series tested, a triPEG gallyol pheophorbide and a triPEG chlorin were the most efficient at generating singlet oxygen, and produced the highest phototoxicity and lowest dark toxicity to Jurkat cells. A detailed kinetic analysis of the PEGylated sensitizers in solution and cell culture and media is also presented. The data provide us with steps in the development of PSPDT to add to the PDT tools we have in general.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/síntese química , Porfirinas/uso terapêutico , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Sobrevivência Celular , Humanos , Células Jurkat , Fármacos Fotossensibilizantes/química , Porfirinas/química , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Ultravioleta
15.
Org Biomol Chem ; 15(4): 972-983, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28059409

RESUMO

The synthesis and photophysical properties of a tetra-PEG-modified and freely water-soluble quinoline-annulated porphyrin are described. We previously demonstrated the ability of quinoline-annulated porphyrins to act as an in vitro NIR photoacoustic imaging (PAI) contrast agent. The solubility of the quinoline-annulated porphyrin derivative in serum now allowed the assessment of the efficacy of the PEGylated derivative as an in vivo NIR contrast agent for the PAI of an implanted tumor in a mouse model. A multi-fold contrast enhancement when compared to the benchmark dye ICG could be shown, a finding that could be traced to its photophysical properties (short triplet lifetimes, low fluorescence and singlet oxygen sensitization quantum yields). A NIR excitation wavelength of 790 nm could be used, fully taking advantage of the optical window of tissue. Rapid renal clearance of the dye was observed. Its straight-forward synthesis, optical properties with the possibility for further optical fine-tuning, nontoxicity, favorable elimination rates, and contrast enhancement make this a promising PAI contrast agent. The ability to conjugate the PAI chromophore with a fluorescent tag using a facile and general conjugation strategy was also demonstrated.


Assuntos
Meios de Contraste/química , Raios Infravermelhos , Imagem Óptica , Porfirinas/química , Quinolinas/química , Tomografia Computadorizada por Raios X , Animais , Meios de Contraste/administração & dosagem , Meios de Contraste/síntese química , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Neoplasias Experimentais/diagnóstico , Processos Fotoquímicos , Porfirinas/administração & dosagem , Porfirinas/síntese química , Quinolinas/administração & dosagem , Solubilidade , Água/química
16.
Org Lett ; 18(22): 5840-5843, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27934504

RESUMO

Facile, one-pot conversion of free base 5,10,15-tris(pentafluorophenyl)corrole, (H3)tpfc, into the coinage metal complexes of 2,3,17,18-tetraiodo-5,10,15-tris(pentafluorophenyl)corrole, (I4-tpfc)M (M = Cu, Ag, Au), is reported. The iodination/metalation procedures provide much higher yields and larger selectivity than both conceivable stepwise syntheses. Photophysical analysis shows that the gold(III) complex (I4-tpfc)Au displays phosphorescence at room temperature and a substantial quantum yield for singlet oxygen formation.

17.
Phys Chem Chem Phys ; 18(16): 10964-75, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27043894

RESUMO

A boron dipyrromethene (BDP) unit and its monostyryl derivative (MSBDP) were introduced at the axial positions of a silicon(iv) phthalocyanine (SiPc) core. The absorption spectrum of this compound virtually covered the entire visible region (300-700 nm) and could be interpreted as a superposition of the spectra of individual components. The intramolecular photoinduced energy and charge transfer processes of this triad were studied using steady-state and time-resolved spectroscopic methods in polar and nonpolar solvents. Upon BDP-part excitation, a fast and highly efficient excitation energy transfer (EET) occurred resulting in strong quenching of its fluorescence and the formation of the first excited singlet state of SiPc or MSBDP. It was found that both EET and charge transfer (CT) processes competed with each other in the depopulation of the first excited singlet state of the MSBDP moiety. The former strongly superseded CT in nonpolar toluene, whereas the latter was dominant in a polar environment. Direct or indirect (via EET) excitation of the SiPc-part of the triad was followed by CT yielding the charge-separated (CS) species BDP-SiPc(˙-)-MSBDP(˙+). The energy gap between the CS state and the S1-state of the SiPc moiety was found to be only 0.06 eV in toluene, which facilitated the back CT process and resulted in the appearance of thermally activated delayed fluorescence. With increasing solvent polarity, the energy of the CS state reduced resulting in the disappearance of the delayed fluorescence in CHCl3, tetrahydrofuran or N,N-dimethylformamide. The charge recombination rate, k(CR), was very fast in polar DMF (3.3 × 10(10) s(-1)), whereas this process was two-orders of magnitude slower in nonpolar toluene (k(CR) = 4.0 × 10(8) s(-1)).

18.
J Photochem Photobiol B ; 160: 79-85, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27101275

RESUMO

This study was performed as a proof of concept for singlet oxygen generating facade paint as an alternative to conventional biocide containing facade paint for the prevention of biofilm growth on outdoor walls. Biofilms on outdoor walls cause esthetic problems and economic damage. Therefore facade paints often contain biocides. However commercially available biocides may have a series of adverse effects on living organisms as well as harmful environmental effects. Furthermore, biocides are increasingly designed to be more effective and are environmentally persistent. Thus, an eco-friendly and non-harmful to human health alternative to conventional biocides in wall color is strongly recommended. The well-known photosensitizer 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine (TMPyP) was used as an additive in a commercially available facade paint. The generation of singlet molecular oxygen was shown using time resolved 2D measurements of the singlet oxygen luminescence. The photodynamic activity of the photosensitizer in the facade paint was demonstrated by phototoxicity tests with defined mold fungi and a mixture of microorganisms harvested from native outdoor biofilms as model organisms. It was proven in general that it is possible to inhibit the growth of biofilm forming microorganisms growing on solid wall paint surfaces by the cationic photosensitizer TMPyP added to the facade paint using daylight conditions for illumination in 12h light and dark cycles.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes , Pintura , Fármacos Fotossensibilizantes/farmacologia , Humanos
19.
Molecules ; 21(4): 485, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27089311

RESUMO

Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.


Assuntos
Biofilmes/crescimento & desenvolvimento , Clorófitas/crescimento & desenvolvimento , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Biofilmes/efeitos da radiação , Clorófitas/efeitos da radiação , Cinética , Luz , Luminescência , Microscopia de Fluorescência , Propriedades de Superfície/efeitos da radiação
20.
Photodiagnosis Photodyn Ther ; 14: 204-10, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26987416

RESUMO

BACKGROUND: Singlet oxygen observation is considered a valuable tool to assess and optimize PDT treatment. In complex systems, such as tumors in vivo, only the direct, time-resolved singlet oxygen luminescence detection can give reliable information about generation and interaction of singlet oxygen. Up to now, evaluation of kinetics was not possible due to insufficient signal-to-noise ratio. Here we present high signal-to-noise ratio singlet oxygen luminescence kinetics obtained in mouse tumor model under PDT relevant conditions. METHODS: A highly optimized system based on a custom made laser diode excitation source and a high aperture multi-furcated fiber, utilizing a photomultiplier tube with a multi photon counting device was used. RESULTS: Luminescence kinetics with unsurpassed signal-to-noise ratio were gained from tumor bearing nude mice in vivo upon topic application, subcutaneous injection as well as intravenous injection of different photosensitizers (chlorin e6 and dendrimer formulations of chlorin e6). Singlet oxygen kinetics in appropriate model systems are discussed to facilitate the interpretation of complex kinetics obtained from in vivo tumor tissue. CONCLUSIONS: This is the first study addressing the complexity of singlet oxygen luminescence kinetics in tumor tissue. At present, further investigations are needed to fully explain the processes involved. Nevertheless, the high signal-to-noise ratio proves the applicability of direct time-resolved singlet oxygen luminescence detection as a prospective tool for monitoring photodynamic therapy.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Oxigênio Singlete/análise , Administração Intravenosa , Administração Tópica , Animais , Cinética , Medições Luminescentes , Camundongos , Camundongos Nus , Modelos Animais , Fármacos Fotossensibilizantes/uso terapêutico , Razão Sinal-Ruído , Oxigênio Singlete/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA