Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 622(7983): 471-475, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758953

RESUMO

Resonant oscillators with stable frequencies and large quality factors help us to keep track of time with high precision. Examples range from quartz crystal oscillators in wristwatches to atomic oscillators in atomic clocks, which are, at present, our most precise time measurement devices1. The search for more stable and convenient reference oscillators is continuing2-6. Nuclear oscillators are better than atomic oscillators because of their naturally higher quality factors and higher resilience against external perturbations7-9. One of the most promising cases is an ultra-narrow nuclear resonance transition in 45Sc between the ground state and the 12.4-keV isomeric state with a long lifetime of 0.47 s (ref. 10). The scientific potential of 45Sc was realized long ago, but applications require 45Sc resonant excitation, which in turn requires accelerator-driven, high-brightness X-ray sources11 that have become available only recently. Here we report on resonant X-ray excitation of the 45Sc isomeric state by irradiation of Sc-metal foil with 12.4-keV photon pulses from a state-of-the-art X-ray free-electron laser and subsequent detection of nuclear decay products. Simultaneously, the transition energy was determined as [Formula: see text] with an uncertainty that is two orders of magnitude smaller than the previously known values. These advancements enable the application of this isomer in extreme metrology, nuclear clock technology, ultra-high-precision spectroscopy and similar applications.

2.
Phys Rev Lett ; 130(17): 173201, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172237

RESUMO

We demonstrate that x-ray fluorescence emission, which cannot maintain a stationary interference pattern, can be used to obtain images of structures by recording photon-photon correlations in the manner of the stellar intensity interferometry of Hanbury Brown and Twiss. This is achieved utilizing femtosecond-duration pulses of a hard x-ray free-electron laser to generate the emission in exposures comparable to the coherence time of the fluorescence. Iterative phasing of the photon correlation map generated a model-free real-space image of the structure of the emitters. Since fluorescence can dominate coherent scattering, this may enable imaging uncrystallised macromolecules.

3.
J Synchrotron Radiat ; 30(Pt 1): 11-23, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601922

RESUMO

With the development of X-ray free-electron lasers (XFELs), producing pulses of femtosecond durations comparable with the coherence times of X-ray fluorescence, it has become possible to observe intensity-intensity correlations due to the interference of emission from independent atoms. This has been used to compare durations of X-ray pulses and to measure the size of a focusedX-ray beam, for example. Here it is shown that it is also possible to observe the interference of fluorescence photons through the measurement of the speckle contrast of angle-resolved fluorescence patterns. Speckle contrast is often used as a measure of the degree of coherence of the incident beam or the fluctuations of the illuminated sample as determined from X-ray diffraction patterns formed by elastic scattering, rather than from fluorescence patterns as addressed here. Commonly used approaches to estimate speckle contrast were found to suffer when applied to XFEL-generated fluorescence patterns due to low photon counts and a significant variation of the excitation pulse energy from shot to shot. A new method to reliably estimate speckle contrast under such conditions, using a weighting scheme, is introduced. The method is demonstrated by comparing the speckle contrast of fluorescence observed with pulses of 3 fs to 15 fs duration.

4.
Struct Dyn ; 9(6): 064301, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36389279

RESUMO

In the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay. Temporal modulation of the Auger electron signal correlated with specific ions is observed, which is governed by the initial electronic coherence and subsequent vibronic coupling to nuclear degrees of freedom. In the time-resolved x-ray absorption measurement, we monitor the time-frequency spectra of the resulting many-body quantum wave packets for a period of 175 fs along different reaction coordinates. Our experiment proves that by measuring specific fragments associated with the glycine dication as a function of the pump-probe delay, one can selectively probe electronic coherences at early times associated with a few distinguishable components of the broad electronic wave packet created initially by the pump pulse in the cation. The corresponding coherent superpositions formed by subsets of electronic eigenstates and evolving along parallel dynamical pathways show different phases and time periods in the range of ( - 0.3 ± 0.1 ) π ≤ ϕ ≤ ( 0.1 ± 0.2 ) π and 18.2 - 1.4 + 1.7 ≤ T ≤ 23.9 - 1.1 + 1.2 fs. Furthermore, for long delays, the data allow us to pinpoint the driving vibrational modes of chemical dynamics mediating charge-induced bond cleavage along different reaction coordinates.

6.
Sci Adv ; 8(22): eabn6848, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35648864

RESUMO

Here, we use x-rays to create and probe quantum coherence in the photoionized amino acid glycine. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay and by photoelectron emission from sequential double photoionization. Sinusoidal temporal modulation of the detected signal at early times (0 to 25 fs) is observed in both measurements. Advanced ab initio many-electron simulations allow us to explain the first 25 fs of the detected coherent quantum evolution in terms of the electronic coherence. In the kinematically complete x-ray absorption measurement, we monitor its dynamics for a period of 175 fs and observe an evolving modulation that may implicate the coupling of electronic to vibronic coherence at longer time scales. Our experiment provides a direct support for the existence of long-lived electronic coherence in photoionized biomolecules.

7.
ACS Appl Mater Interfaces ; 14(27): 31373-31384, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35764295

RESUMO

The spontaneous crystal surface reconstruction of M-plane α-Al2O3 is employed for nanopatterning and nanofabrication in various fields of research including, among others, magnetism, superconductivity, and optoelectronics. In this reconstruction process the crystalline surface transforms from a planar morphology to one with a nanoscale ripple patterning. However, the high sample temperature required to induce surface reconstruction made in situ studies of the process seem unfeasible. The kinetics of ripple pattern formation therefore remained uncertain, and thus production of templates for nanofabrication could not advance beyond a trial-and-error stage. We present an approach combining in situ real-time grazing incidence small-angle X-ray scattering experiments (GISAXS) with model-based analysis and with ex situ atomic force microscopy (AFM) to observe this morphological transition in great detail. Our approach provides time-resolved information about all relevant morphological parameters required to trace the surface topography on the nanometer scale during reconstruction, i.e., the time dependence of the pattern wavelength, the ripple length, width, and height, and thus their facet angles. It offers a comprehensive picture of this process exemplified by a M-plane α-Al2O3 surface annealed at 1325 °C for 930 min. Fitting the model parameters to the experimental GISAXS data revealed a Johnson-Mehl-Avrami-Kolmogorov type of behavior for the pattern wavelength and a predominantly linear time dependence of the other parameters. In this case the reconstruction resulted in a crystalline surface fully patterned with asymmetric ripple-shaped nanostructures of 75 nm periodicity, 15 nm in height, and 630 nm in length. By elucidating the time dependence of these morphological parameters, this study shows a powerful way to significantly advance the predictability of annealing outcome and thus to efficiently customize nanopatterned α-Al2O3 templates for improved nanofabrication routines.

8.
ACS Appl Mater Interfaces ; 13(27): 32343-32351, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34214392

RESUMO

Controlling the magnetic properties of ultrathin films remains one of the main challenges to the further development of tunnel magnetoresistive (TMR) device applications. The magnetic response in such devices is mainly governed by extending the primary TMR trilayer with the use of suitable contact materials. The transfer of magnetic anisotropy to ferromagnetic electrodes consisting of CoFeB layers results in a field-dependent TMR response, which is determined by the magnetic properties of the CoFeB as well as the contact materials. We flexibly apply oblique-incidence deposition (OID) to introduce arbitrary intrinsic in-plane anisotropy profiles into the magnetic layers. The OID-induced anisotropy shapes the magnetic response and eliminates the requirement of additional magnetic contact materials. Functional control is achieved via an adjustable shape anisotropy that is selectively tailored for the ultrathin CoFeB layers. This approach circumvents previous limitations on TMR devices and allows for the design of new sensing functionalities, which can be precisely customized to a specific application, even in the high field regime. The resulting sensors maintain the typical TMR signal strength as well as a superb thermal stability of the tunnel junction, revealing a striking advantage in functional TMR design using anisotropic interfacial roughness.

9.
J Phys Chem Lett ; 12(12): 3240-3245, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33764073

RESUMO

Phonon modes play a vital role in the cooperative phenomenon of light-induced spin transitions in spin crossover (SCO) molecular complexes. Although the cooperative vibrations, which occur over several hundreds of picoseconds to nanoseconds after photoexcitation, are understood to play a crucial role in this phase transition, they have not been precisely identified. Therefore, we have performed a novel optical laser pump-nuclear resonance probe experiment to identify the Fe-projected vibrational density of states (pDOS) during the first few nanoseconds after laser excitation of the mononuclear Fe(II) SCO complex [Fe(PM-BiA)2(NCS)2]. Evaluation of the so obtained nanosecond-resolved pDOS yields an excitation of ∼8% of the total volume of the complex from the low-spin to high-spin state. Density functional theory calculations allow simulation of the observed changes in the pDOS and thus identification of the transient inter- and intramolecular vibrational modes at nanosecond time scales.

10.
Appl Opt ; 60(4): 912-917, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690397

RESUMO

The 35-fs-long pulses of a commercial Ti:sapphire amplifier are compressed to ∼20fs via self-phase modulation in bulk glass substrates. The cascading of both nonlinear broadening and dispersion compensation stages makes use of the increasing peak power in the successive nonlinear stages. As an application example, the compressed pulses are used for electro-optical sampling of terahertz waves created by optically pumped thin-film spin emitters.

11.
Nature ; 590(7846): 401-404, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597757

RESUMO

Coherent control of quantum dynamics is key to a multitude of fundamental studies and applications1. In the visible or longer-wavelength domains, near-resonant light fields have become the primary tool with which to control electron dynamics2. Recently, coherent control in the extreme-ultraviolet range was demonstrated3, with a few-attosecond temporal resolution of the phase control. At hard-X-ray energies (above 5-10 kiloelectronvolts), Mössbauer nuclei feature narrow nuclear resonances due to their recoilless absorption and emission of light, and spectroscopy of these resonances is widely used to study the magnetic, structural and dynamical properties of matter4,5. It has been shown that the power and scope of Mössbauer spectroscopy can be greatly improved using various control techniques6-16. However, coherent control of atomic nuclei using suitably shaped near-resonant X-ray fields remains an open challenge. Here we demonstrate such control, and use the tunable phase between two X-ray pulses to switch the nuclear exciton dynamics between coherent enhanced excitation and coherent enhanced emission. We present a method of shaping single pulses delivered by state-of-the-art X-ray facilities into tunable double pulses, and demonstrate a temporal stability of the phase control on the few-zeptosecond timescale. Our results unlock coherent optical control for nuclei, and pave the way for nuclear Ramsey spectroscopy17 and spin-echo-like techniques, which should not only advance nuclear quantum optics18, but also help to realize X-ray clocks and frequency standards19. In the long term, we envision time-resolved studies of nuclear out-of-equilibrium dynamics, which is a long-standing challenge in Mössbauer science20.

12.
J Synchrotron Radiat ; 28(Pt 1): 120-124, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399560

RESUMO

This work presents the improvements in the design and testing of polarimeters based on channel-cut crystals for nuclear resonant scattering experiments at the 14.4 keV resonance of 57Fe. By using four asymmetric reflections at asymmetry angles of α1 = -28°, α2 = 28°, α3 = -28° and α4 = 28°, the degree of polarization purity could be improved to 2.2 × 10-9. For users, an advanced polarimeter without beam offset is now available at beamline P01 of the storage ring PETRA III.

13.
Sci Adv ; 7(5)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33514541

RESUMO

Ultrafast and precise control of quantum systems at x-ray energies involves photons with oscillation periods below 1 as. Coherent dynamic control of quantum systems at these energies is one of the major challenges in hard x-ray quantum optics. Here, we demonstrate that the phase of a quantum system embedded in a solid can be coherently controlled via a quasi-particle with subattosecond accuracy. In particular, we tune the quantum phase of a collectively excited nuclear state via transient magnons with a precision of 1 zs and a timing stability below 50 ys. These small temporal shifts are monitored interferometrically via quantum beats between different hyperfine-split levels. The experiment demonstrates zeptosecond interferometry and shows that transient quasi-particles enable accurate control of quantum systems embedded in condensed matter environments.

14.
Phys Rev Lett ; 123(15): 153902, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702302

RESUMO

We introduce an analytical phase-reconstruction principle that retrieves atomic scale motion via time-domain interferometry. The approach is based on a resonant interaction with high-frequency light and does not require temporal resolution on the time scale of the resonance period. It is thus applicable to hard x rays and γ rays for measurements of extremely small spatial displacements or relative-frequency changes. Here, it is applied to retrieve the temporal phase of a 14.4 keV emission line of an ^{57}Fe sample, which corresponds to a spatial translation of this sample. The small wavelength of this transition (λ=0.86 Å) allows for determining the motion of the emitter on sub-Ångström length and nanosecond timescales.

15.
Phys Rev Lett ; 122(12): 123608, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978038

RESUMO

By embedding a thin layer of tantalum in an x-ray cavity, we observe a change in the spectral characteristics of an inner-shell transition of the metal. The interaction between the cavity mode vacuum and the L_{III}-edge transition is enhanced, permitting the observation of the collective Lamb shift, superradiance, and a Fano-like cavity-resonance interference effect. This experiment demonstrates the feasibility of cavity quantum electrodynamics with electronic resonances in the x-ray range with applications to manipulating and probing the electronic structure of condensed matter with high-resolution x-ray spectroscopy in an x-ray cavity setting.

16.
Sci Rep ; 9(1): 5097, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911115

RESUMO

The high brilliance of modern synchrotron radiation sources facilitates experiments with high-energy x-rays across a range of disciplines, including the study of the electronic and magnetic correlations using elastic and inelastic scattering techniques. Here we report on Nuclear Resonance Scattering at the 73 keV nuclear level in 193Ir. The transitions between the hyperfine split levels show an untypically high E2/M1 multi-polarity mixing ratio combined with an increased sensitivity to certain changes in the hyperfine field direction compared to non-mixing transitions. The method opens a new way for probing local magnetic and electronic properties of correlated materials containing iridium and provides novel insights into anisotropic magnetism in iridates. In particular, unexpected out-of-plane components of magnetic hyperfine fields and non-zero electric field gradients in Sr2IrO4 have been detected and attributed to the strong spin-orbit interaction in this iridate. Due to the high, 62% natural abundance of the 193Ir isotope, no isotopic enrichment of the samples is required, qualifying the method for a broad range of applications.

17.
J Synchrotron Radiat ; 25(Pt 5): 1277-1290, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179167

RESUMO

The PETRA IV project aims at upgrading the present synchrotron radiation source PETRA III at DESY into an ultralow-emittance source. Being diffraction limited up to X-rays of about 10 keV, PETRA IV will be ideal for three-dimensional X-ray microscopy of biological, chemical and physical processes under realistic conditions at length scales from atomic dimensions to millimetres and time scales down to the sub-nanosecond regime. In this way, it will enable groundbreaking studies in many fields of science and industry, such as health, energy, earth and environment, mobility and information technology. The science case is reviewed and the current state of the conceptual design is summarized, discussing a reference lattice, a hybrid multi-bend achromat with an interleaved sextupole configuration based on the ESRF-EBS design, in more detail as well as alternative lattice concepts.

18.
Sci Rep ; 8(1): 11261, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050130

RESUMO

We introduce a method to study the spatial profiles of standing spin waves in ferromagnetic microstructures. The method relies on Nuclear Resonant Scattering of 57Fe using a microfocused beam of synchrotron radiation, the transverse coherence length of which is smaller than the length scale of lateral variations in the magnetization dynamics. Using this experimental method, the nuclear resonant scattering signal due to a confined spin wave is determined on the basis of an incoherent superposition model. From the fits of the Nuclear Resonant Scattering time spectra, the precessional amplitude profile across the stripe predicted by an analytical model is reconstructed. Our results pave the way for studying non-homogeneous dynamic spin configurations in microstructured magnetic systems using nuclear resonant scattering of synchrotron light.

19.
Phys Rev Lett ; 119(5): 053401, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949712

RESUMO

Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission-often the predominant scattering mechanism-are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.

20.
Phys Rev Lett ; 118(23): 237204, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644667

RESUMO

Nuclear resonant x-ray diffraction in grazing incidence geometry is used to determine the lateral magnetic configuration in a one-dimensional lattice of ferromagnetic nanostripes. During magnetic reversal, strong nuclear superstructure diffraction peaks appear in addition to the electronic ones due to an antiferromagnetic order in the nanostripe lattice. We show that the analysis of the angular distribution together with the time dependence of the resonantly diffracted x rays reveals surface spin structures with very high sensitivity. This scattering technique provides unique access to laterally correlated spin configurations in magnetically ordered nanostructures and, in perspective, also to their dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA