RESUMO
Although χ(2) nonlinear optical processes, such as difference frequency generation (DFG), are often used in conjunction with fiber lasers for wavelength conversion and photon-pair generation, the monolithic fiber architecture is broken by the use of bulk crystals to access χ(2). We propose a novel solution by employing quasi-phase matching (QPM) in molecular-engineered hydrogen-free, polar-liquid core fiber (LCF). Hydrogen-free molecules offer attractive transmission in certain NIR-MIR regions and polar molecules tend to align with an externally applied electrostatic field creating a macroscopic χ e f f(2). To further increase χ e f f(2) we investigate charge transfer (CT) molecules in solution. Using numerical modeling we investigate two bromotrichloromethane based mixtures and show that the LCF has reasonably high NIR-MIR transmission and large QPM DFG electrode period. The inclusion of CT molecules has the potential to yield χ e f f(2) at least as large as has been measured in silica fiber core. Numerical modeling for the degenerate DFG case indicates that signal amplification and generation through QPM DFG can achieve nearly 90% efficiency.
RESUMO
Emission bands from thermally coupled states in lanthanide-doped nanoparticles have been studied for ratiometric nanothermometry in biological applications. Unfortunately certain factors such as water absorption distort the intensity, limiting the accuracy of ratiometric nanothermometry. However, the decay time of such states does not suffer from such distortions. We introduce the decay time of the 3H4 state in Yb3+, Tm3+-doped nanoparticles for improved nanothermometry. The strong 800 nm upconversion emission exists in the first biological transparency window. This is the first use of a single upconversion band for lifetime nanothermometry.