RESUMO
This study aims to determine the catalytic activity and stability of ligand-modified UiO-66 with different functional groups (-NO2, -OH) in deep oxidative desulfurization from a model fuel (MF). The planar sulfur compounds included dibenzothiophene (DBT), 2-methylbenzothiazole (2-MB), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) in n-dodecane as the fuel phase. The synthesized functionalized metal-organic framework (MOF) samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H NMR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), nitrogen adsorption-desorption analysis, and microwave plasma-atomic emission spectrometer (MP-AES). The experiment assessment and desulfurization reaction optimization were carried out by the central composite design methodology. Response surface methodology and analysis of variance were employed to evaluate the individual process factors, their interactions, and sulfur removal responses. The responses showed that the oxidation of the planar compounds declined following the sequence DBT > 2-MB â« 4,6-DMDBT for all the MOFs. The findings revealed that at 66.7 °C, 3.0 equiv of oxidative agent over sulfur and 9.7 of MOF over sulfur by weight achieved the highest removal efficiency of 98.68% DBT, 93.23% 2-MB, and 69.32% 4,6-DMDBT for UiO-66-NO2 as a catalyst from the model fuel. It was also observed that UiO-66-NO2 had a higher efficiency in deep oxidative desulfurization when compared to other UiO-66-based catalysts used in the current study. Under optimal conditions, all the MOFs showed acceptable catalytic activity and reusability after four runs, although gradual loss of activity was observed.