Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 5(1): 65-73, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26511532

RESUMO

Nylon-6 is a bulk polymer used for many applications. It consists of the non-natural building block 6-aminocaproic acid, the linear form of caprolactam. Via a retro-synthetic approach, two synthetic pathways were identified for the fermentative production of 6-aminocaproic acid. Both pathways require yet unreported novel biocatalytic steps. We demonstrated proof of these bioconversions by in vitro enzyme assays with a set of selected candidate proteins expressed in Escherichia coli. One of the biosynthetic pathways starts with 2-oxoglutarate and contains bioconversions of the ketoacid elongation pathway known from methanogenic archaea. This pathway was selected for implementation in E. coli and yielded 6-aminocaproic acid at levels up to 160 mg/L in lab-scale batch fermentations. The total amount of 6-aminocaproic acid and related intermediates generated by this pathway exceeded 2 g/L in lab-scale fed-batch fermentations, indicating its potential for further optimization toward large-scale sustainable production of nylon-6.


Assuntos
Caprolactama/análogos & derivados , Engenharia Metabólica/métodos , Polímeros/síntese química , Adipatos/metabolismo , Ácido Aminocaproico/metabolismo , Técnicas de Cultura Celular por Lotes , Caprolactama/síntese química , Cromatografia Líquida , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Metaboloma , Ácidos Pimélicos/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Ácidos Tricarboxílicos/metabolismo
2.
Metab Eng ; 11(2): 125-37, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19271269

RESUMO

Penicillium chrysogenum was successfully engineered to produce a novel carbamoylated cephalosporin that can be used as a synthon for semi-synthetic cephalosporins. To this end, genes for Acremonium chrysogenum expandase/hydroxylase and Streptomyces clavuligerus carbamoyltransferase were expressed in a penicillinG high-producing strain of P.chrysogenum. Growth of the engineered strain in the presence of adipic acid resulted in production of adipoyl-7-amino-3-carbamoyloxymethyl-3-cephem-4-carboxylic acid (ad7-ACCCA) and of several adipoylated pathway intermediates. A combinatorial chemostat-based transcriptome study, in which the ad7-ACCCA-producing strain and a strain lacking key genes in beta-lactam synthesis were grown in the presence and absence of adipic acid, enabled the dissection of transcriptional responses to adipic acid per se and to ad7-ACCCA production. Transcriptome analysis revealed that adipate catabolism in P.chrysogenum occurs via beta-oxidation and enabled the identification of putative genes for enzymes involved in mitochondrial and peroxisomal beta-oxidation pathways. Several of the genes that showed a specifically altered transcript level in ad7-ACCCA-producing cultures were previously implicated in oxidative stress responses.


Assuntos
Acremonium/fisiologia , Cefalosporinas/biossíntese , Melhoramento Genético/métodos , Penicillium chrysogenum/fisiologia , Streptomyces/fisiologia , Proteínas Recombinantes/biossíntese
3.
BMC Genomics ; 10: 75, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19203396

RESUMO

BACKGROUND: Since the discovery of the antibacterial activity of penicillin by Fleming 80 years ago, improvements of penicillin titer were essentially achieved by classical strain improvement through mutagenesis and screening. The recent sequencing of Penicillium chrysogenum strain Wisconsin1255-54 and the availability of genomics tools such as DNA-microarray offer new perspective. RESULTS: In studies on beta-lactam production by P. chrysogenum, addition and omission of a side-chain precursor is commonly used to generate producing and non-producing scenarios. To dissect effects of penicillinG production and of its side-chain precursor phenylacetic acid (PAA), a derivative of a penicillinG high-producing strain without a functional penicillin-biosynthesis gene cluster was constructed. In glucose-limited chemostat cultures of the high-producing and cluster-free strains, PAA addition caused a small reduction of the biomass yield, consistent with PAA acting as a weak-organic-acid uncoupler. Microarray-based analysis on chemostat cultures of the high-producing and cluster-free strains, grown in the presence and absence of PAA, showed that: (i) Absence of a penicillin gene cluster resulted in transcriptional upregulation of a gene cluster putatively involved in production of the secondary metabolite aristolochene and its derivatives, (ii) The homogentisate pathway for PAA catabolism is strongly transcriptionally upregulated in PAA-supplemented cultures (iii) Several genes involved in nitrogen and sulfur metabolism were transcriptionally upregulated under penicillinG producing conditions only, suggesting a drain of amino-acid precursor pools. Furthermore, the number of candidate genes for penicillin transporters was strongly reduced, thus enabling a focusing of functional analysis studies. CONCLUSION: This study demonstrates the usefulness of combinatorial transcriptome analysis in chemostat cultures to dissect effects of biological and process parameters on gene expression regulation. This study provides for the first time clear-cut target genes for metabolic engineering, beyond the three genes of the beta-lactam pathway.


Assuntos
Penicilina G/metabolismo , Penicillium chrysogenum/genética , Fenilacetatos/metabolismo , Meios de Cultura , Deleção de Genes , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Penicillium chrysogenum/metabolismo , RNA Fúngico/metabolismo
4.
Metab Eng ; 8(2): 91-101, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16253533

RESUMO

Based on assumed reaction network structures, NADPH availability has been proposed to be a key constraint in beta-lactam production by Penicillium chrysogenum. In this study, NADPH metabolism was investigated in glucose-limited chemostat cultures of an industrial P. chrysogenum strain. Enzyme assays confirmed the NADP(+)-specificity of the dehydrogenases of the pentose-phosphate pathway and the presence of NADP(+)-dependent isocitrate dehydrogenase. Pyruvate decarboxylase/NADP(+)-linked acetaldehyde dehydrogenase and NADP(+)-linked glyceraldehyde-3-phosphate dehydrogenase were not detected. Although the NADPH requirement of penicillin-G-producing chemostat cultures was calculated to be 1.4-1.6-fold higher than that of non-producing cultures, in vitro measured activities of the major NADPH-providing enzymes were the same. Isolated mitochondria showed high rates of antimycin A-sensitive respiration of NADPH, thus indicating the presence of a mitochondrial NADPH dehydrogenase that oxidises cytosolic NADPH. The presence of this enzyme in P. chrysogenum might have important implications for stoichiometric modelling of central carbon metabolism and beta-lactam production and may provide an interesting target for metabolic engineering.


Assuntos
Mitocôndrias/enzimologia , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , NADPH Desidrogenase/metabolismo , NADP/metabolismo , Penicillium chrysogenum/citologia , Penicillium chrysogenum/metabolismo , beta-Lactamas/metabolismo , Proliferação de Células , Simulação por Computador , Metabolismo Energético/fisiologia , Ativação Enzimática
5.
FEMS Yeast Res ; 2(2): 165-72, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12702304

RESUMO

In glucose-limited aerobic chemostat cultures of a wild-type Saccharomyces cerevisiae and a derived hxk2 null strain, metabolic fluxes were identical. However, the concentrations of intracellular metabolites, especially fructose 1,6-bisphosphate, and hexose-phosphorylating activities differed. Interestingly, the hxk2 null strain showed a higher maximal growth rate and higher Crabtree threshold dilution rate, revealing a higher oxidative capacity for this strain. After a pulse of glucose, aerobic glucose-limited cultures of wild-type S. cerevisiae displayed an overshoot in the intracellular concentrations of glucose 6-phosphate, fructose 6-phosphate, and fructose 1,6-bisphosphate before a new steady state was established, in contrast to the hxk2 null strain which reached a new steady state without overshoot of these metabolites. At low dilution rates the overshoot of intracellular metabolites in the wild-type strain coincided with the immediate production of ethanol after the glucose pulse. In contrast, in the hxk2 null strain the production of ethanol started gradually. However, in spite of the initial differences in ethanol production and dynamic behaviour of the intracellular metabolites, the steady-state fluxes after transition from glucose limitation to glucose excess were not significantly different in the wild-type strain and the hxk2 null strain at any dilution rate.


Assuntos
Glucose/metabolismo , Glicólise , Hexoquinase/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose , Meios de Cultura , Deleção de Genes , Genes Fúngicos , Hexoquinase/deficiência , Hexoquinase/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA