Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37631358

RESUMO

Cerium oxide nanoparticles (CONPs) have a unique surface redox chemistry that appears to selectively protect normal tissues from radiation induced damage. Our prior research exploring the biocompatibility of polymer-coated CONPs found further study of poly-acrylic acid (PAA)-coated CONPs was warranted due to improved systemic biodistribution and rapid renal clearance. This work further explores PAA-CONPs' radioprotective efficacy and mechanism of action related to tumor microenvironment pH. An ex vivo TUNEL assay was used to measure PAA-CONPs' protection of the irradiated mouse colon in comparison to the established radioprotector amifostine. [18F]FDG PET imaging of spontaneous colon tumors was utilized to determine the effects of PAA-CONPs on tumor radiation response. In vivo MRI and an ex vivo clonogenic assay were used to determine pH effects on PAA-CONPs' radioprotection in irradiated tumor-bearing mice. PAA-CONPs showed excellent radioprotective efficacy in the normal colon that was equivalent to uncoated CONPs and amifostine. [18F]FDG PET imaging showed PAA-CONPs do not affect tumor response to radiation. Normalization of tumor pH allowed some radioprotection of tumors by PAA-CONPs, which may explain their lack of tumor radioprotection in the acidic tumor microenvironment. Overall, PAA-CONPs meet the criteria for clinical application as a radioprotective therapeutic agent and are an excellent candidate for further study.

2.
Front Oncol ; 13: 1165326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998441

RESUMO

Increased levels of reactive oxygen/nitrogen species are one hallmark of chronic inflammation contributing to the activation of pro-inflammatory/proliferative pathways. In the cancers analyzed, the tetrahydrobiopterin:dihydrobiopterin ratio is lower than that of the corresponding normal tissue, leading to an uncoupled nitric oxide synthase activity and increased generation of reactive oxygen/nitrogen species. Previously, we demonstrated that prophylactic treatment with sepiapterin, a salvage pathway precursor of tetrahydrobiopterin, prevents dextran sodium sulfate-induced colitis in mice and associated azoxymethane-induced colorectal cancer. Herein, we report that increasing the tetrahydrobiopterin:dihydrobiopterin ratio and recoupling nitric oxide synthase with sepiapterin in the colon cancer cell lines, HCT116 and HT29, inhibit their proliferation and enhance cell death, in part, by Akt/GSK-3ß-mediated downregulation of ß-catenin. Therapeutic oral gavage with sepiapterin of mice bearing azoxymethane/dextran sodium sulfate-induced colorectal cancer decreased metabolic uptake of [18F]-fluorodeoxyglucose and enhanced apoptosis nine-fold in these tumors. Immunohistochemical analysis of both mouse and human tissues indicated downregulated expression of key enzymes in tetrahydrobiopterin biosynthesis in the colorectal cancer tumors. Human stage 1 colon tumors exhibited a significant decrease in the expression of quinoid dihydropteridine reductase, a key enzyme involved in recycling tetrahydrobiopterin suggesting a potential mechanism for the reduced tetrahydrobiopterin:dihydrobiopterin ratio in these tumors. In summary, sepiapterin treatment of colorectal cancer cells increases the tetrahydrobiopterin:dihydrobiopterin ratio, recouples nitric oxide synthase, and reduces tumor growth. We conclude that nitric oxide synthase coupling may provide a useful therapeutic target for treating patients with colorectal cancer.

3.
Radiat Res ; 195(5): 463-473, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33822229

RESUMO

After radiation exposure, endothelium-dependent vasorelaxation is impaired due to impaired nitric oxide production. Endothelial dysfunction is characterized by uncoupled endothelial nitric oxide synthase activity, oxidation of the reduced cofactor tetrahydrobiopterin to dihydrobiopterin as one well recognized mechanism. Oral treatment with sepiapterin, a tetrahydrobiopterin precursor, decreased infiltrating inflammatory cells and cytokine levels in mice with colitis. We therefore tested whether a synthetic sepiapterin, PTC923, might mitigate radiation-induced cardiac and pulmonary injuries. C57L/J wild-type 6-8-week-old mice of both sexes received 5 Gy total-body irradiation (TBI), followed by a top-up dose of 6.5 Gy to the thorax (total thoracic dose of 11.5 Gy). Starting from 24 h postirradiation, mice were treated once daily with 1 mg/kg PTC923 for six days by oral gavage. Assessment of lung injury by breathing rate was measured every other week and echocardiography to assess heart function was performed at different time points (8, 30, 60, 90 and 180 days). Plasma proteins (fibrinogen, neutrophil elastase, C-reactive protein, and IL-6) were assessed as well. TBI induced a reduction in cardiac contractile reserve and an impairment in diastolic function restored by daily oral PTC923. Postirradiation lung injury was significantly delayed by PTC923. TBI mice treated with PTC923 experienced a longer survival compared to nonirradiated mice (71% vs. 40% of mice alive after 180 days). PTC923-treated mice showed a reduction in inflammatory mediators, especially IL-6 and IL-1b. In conclusion, these findings support the proposal that PTC923 is a potential mitigator of cardiac and lung injury caused by TBI.


Assuntos
Traumatismos Cardíacos/tratamento farmacológico , Traumatismos Cardíacos/etiologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Pterinas/administração & dosagem , Pterinas/farmacologia , Irradiação Corporal Total/efeitos adversos , Administração Oral , Animais , Relação Dose-Resposta à Radiação , Feminino , Traumatismos Cardíacos/metabolismo , Mediadores da Inflamação/metabolismo , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pterinas/uso terapêutico , Fatores de Tempo
4.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31527309

RESUMO

Depletion of epithelial cells after lung injury prompts proliferation and epithelial mesenchymal transition (EMT) of progenitor cells, and this repopulates the lost epithelial layer. To investigate the cell proliferative function of human oncoprotein MDM2, we generated mouse models targeting human MDM2 expression in either lung Club or alveolar cells after doxycycline treatment. We report that MDM2 expression in lung Club or alveolar cells activates DNA replication specifically in lung progenitor cells only after chemical- or radiation-induced lung injury, irrespective of their p53 status. Activation of DNA replication by MDM2 triggered by injury leads to proliferation of lung progenitor cells and restoration of the lost epithelial layers. Mouse lung with no Mdm2 allele loses its ability to replicate DNA, whereas loss of 1 Mdm2 allele compromises this function, demonstrating the requirement of endogenous MDM2. We show that the p53-independent ability of MDM2 to activate Akt signaling is essential for initiating DNA replication in lung progenitor cells. Furthermore, MDM2 activates the Notch signaling pathway and expression of EMT markers, indicative of epithelial regeneration. This is the first report to our knowledge demonstrating a direct p53-independent participation of MDM2 in progenitor cell proliferation and epithelial repair after lung injury, distinct from a p53-degrading antiapoptotic effect preventing injury.


Assuntos
Replicação do DNA , Lesão Pulmonar/patologia , Pulmão/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Regeneração/genética , Animais , Proliferação de Células/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Modelos Animais de Doenças , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Técnicas de Introdução de Genes , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/efeitos da radiação , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Camundongos , Camundongos Knockout , Naftalenos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética , Células-Tronco/patologia , Proteína Supressora de Tumor p53/genética
5.
J Pharmacol Exp Ther ; 365(3): 536-543, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581154

RESUMO

Previously, we demonstrated that nitric oxide (NO) synthase (NOS) is uncoupled in a wide range of solid tumors and that restoring NOS coupling with the tetrahydrobiopterin precursor sepiapterin (SP) inhibits tumor progression. Endothelial dysfunction characterizes the poorly functional vasculature of solid tumors, and since NO is critical for regulation of endothelial function we asked whether SP, by recoupling NOS, improves tumor vasculature structure and function-enhancing chemotherapeutic delivery and response to radiotherapy. MMTV-neu mice with spontaneous breast tumors were treated with SP by oral gavage and evaluated by multispectral optoacoustic tomographic analysis of tumor HbO2 and by tissue staining for markers of hypoxia, blood perfusion, and markers of endothelial and smooth muscle proteins. Recoupling tumor NOS activity results in vascular normalization observed as reduced tumor hypoxia, improved tumor percentage of HbO2 and perfusion, as well as increased pericyte coverage of tumor blood vessels. The normalized vasculature and improved tumor oxygenation led to a greater than 2-fold increase in radiation-induced apoptosis compared with radiation or SP alone. High-performance liquid chromatography analysis of tumor doxorubicin levels showed a greater than 50% increase in doxorubicin uptake and a synergistic effect on tumor cell apoptosis. This study highlights for the first time the importance of NOS uncoupling and endothelial dysfunction in the development of tumor vasculature and presents a new approach for improving the tumoricidal efficacies of chemotherapy and radiotherapy.


Assuntos
Antineoplásicos/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Pterinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Animais , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/efeitos da radiação , Circulação Sanguínea/efeitos dos fármacos , Circulação Sanguínea/efeitos da radiação , Vasos Sanguíneos/fisiopatologia , Vasos Sanguíneos/efeitos da radiação , Linhagem Celular Tumoral , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Humanos , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase/metabolismo , Oxigênio/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação
6.
Radiat Res ; 186(5): 478-488, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27841740

RESUMO

There is an ongoing and significant need for radiation countermeasures to reduce morbidities and mortalities associated with exposure of the heart and lungs from a radiological or nuclear incidents. Radiation-induced late effects occur months to years after exposure, stemming from significant tissue damage and remodeling, resulting in fibrosis and loss of function. TGF-ß is reported to play a role in both pulmonary and cardiac fibrosis. We investigated the ability of a small molecule TGF-ß receptor 1 inhibitor, IPW-5371, to mitigate the effects of thoracic irradiation in C57L/J mice, a murine model that most closely resembles that observed in humans in the induction of fibrosis and dose response. To simulate a radiological event, radiation was administered in two doses: 5 Gy total-body irradiation (eliciting a whole-body response) and immediately after that, a thoracic "top-up" of 6.5 Gy irradiation, for a total dose of 11.5 Gy to the thorax. IPW-5371 was administered once daily, orally, starting 24 h postirradiation for 6 or 20 weeks at a dose of 10 mg/kg or 30 mg/kg. Animals were monitored for a period of 180 days for survival, and cardiopulmonary injury was assessed by echocardiography, breathing rate and arterial oxygen saturation. Exposure of the thorax (11.5 Gy) induced both pulmonary and cardiac injury, resulting in a reduced life span with median survival of 135 days. IPW-5371 treatment for 6 weeks, at both 10 mg/kg and 30 mg/kg, delayed disease onset and mortality, with median survival of 165 days. Twenty weeks of IPW-5371 treatment at 30 mg/kg preserved arterial O2 saturation and cardiac contractile reserve and resulted in significant decreases in breathing frequency and cardiac and pulmonary fibrosis. This led to dramatic improvement in survival compared to the irradiated, vehicle-treated group (P < 0.001), and was statistically insignificant from the nonirradiated group. We observed that IPW-5371 treatment resulted in decreased pSmad3 tissue levels, confirming the effect of IPW-5371 on TGF-ß signaling. These results demonstrate that IPW-5371 represents a potentially promising radiation countermeasure for the treatment of radiation-induced late effects.


Assuntos
Protetores contra Radiação/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Colágeno/metabolismo , Feminino , Meia-Vida , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/efeitos da radiação , Masculino , Camundongos , Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Protetores contra Radiação/farmacocinética , Protetores contra Radiação/uso terapêutico , Receptor do Fator de Crescimento Transformador beta Tipo I , Respiração/efeitos dos fármacos , Respiração/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Análise de Sobrevida , Fator de Crescimento Transformador beta/metabolismo
7.
Int J Radiat Oncol Biol Phys ; 93(2): 436-43, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26238954

RESUMO

PURPOSE: This study tested whether racial differences in genetic polymorphisms of 4 genes involved in wound repair and response to radiation can be used to predict the occurrence of normal tissue late effects of radiation therapy and indicate potential therapeutic targets. METHODS AND MATERIALS: This prospective study examined genetic polymorphisms that modulate the expression of 4 genes involved in inflammation and fibrosis and response to radiation (HMOX1, NFE2L2, NOS3, and TGFß1). DNA from blood samples of 179 patients (∼ 80% breast and head and neck) collected at the time of diagnosis by their radiation oncologist as exhibiting late normal tissue toxicity was used for the analysis. Patient demographics were as follows: 56% white, 43% African American, 1% other. Allelic frequencies of the different polymorphisms of the participants were compared with those of the general American population stratified by race. Twenty-six additional patients treated with radiation, but without toxicity at 3 months or later after therapy, were also analyzed. RESULTS: Increased frequency of a long GT repeat in the HMOX1 promoter was associated with late effects in both African American and white populations. The single nucleotide polymorphisms (SNP) rs1800469 in the TGFß1 promoter and the rs6721961 SNP in the NFE2L2 promoter were also found to significantly associate with late effects in African Americans but not whites. A combined analysis of these polymorphisms revealed that >90% of African American patients with late effects had at least 1 of these minor alleles, and 58% had 2 or more. No statistical significance was found relating the studied NOS3 polymorphisms and normal tissue toxicity. CONCLUSIONS: These results support a strong association between wound repair and late toxicities of radiation. The presence of these genetic risk factors can vary significantly among different ethnic groups, as demonstrated for some of the SNPs. Future studies should account for the possibility of such ethnic heterogeneity in the late toxicities of radiation.


Assuntos
Negro ou Afro-Americano/genética , Heme Oxigenase-1/genética , Fator 2 Relacionado a NF-E2/genética , Óxido Nítrico Sintase Tipo III/genética , Regiões Promotoras Genéticas , Lesões por Radiação/genética , Fator de Crescimento Transformador beta1/genética , População Branca/genética , Cicatrização/genética , Povo Asiático/genética , População Negra/genética , Neoplasias da Mama/etnologia , Neoplasias da Mama/radioterapia , Feminino , Neoplasias de Cabeça e Pescoço/etnologia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Neoplasias Pulmonares/etnologia , Neoplasias Pulmonares/radioterapia , Masculino , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/radioterapia , Lesões por Radiação/etnologia
8.
Mol Cancer Res ; 13(6): 1034-43, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25724429

RESUMO

UNLABELLED: Here, evidence suggests that nitric oxide synthases (NOS) of tumor cells, in contrast with normal tissues, synthesize predominantly superoxide and peroxynitrite. Based on high-performance liquid chromatography analysis, the underlying mechanism for this uncoupling is a reduced tetrahydrobiopterin:dihydrobiopterin ratio (BH4:BH2) found in breast, colorectal, epidermoid, and head and neck tumors compared with normal tissues. Increasing BH4:BH2 and reconstitution of coupled NOS activity in breast cancer cells with the BH4 salvage pathway precursor, sepiapterin, causes significant shifts in downstream signaling, including increased cGMP-dependent protein kinase (PKG) activity, decreased ß-catenin expression, and TCF4 promoter activity, and reduced NF-κB promoter activity. Sepiapterin inhibited breast tumor cell growth in vitro and in vivo as measured by a clonogenic assay, Ki67 staining, and 2[18F]fluoro-2-deoxy-D-glucose-deoxyglucose positron emission tomography (FDG-PET). In summary, using diverse tumor types, it is demonstrated that the BH4:BH2 ratio is lower in tumor tissues and, as a consequence, NOS activity generates more peroxynitrite and superoxide anion than nitric oxide, resulting in important tumor growth-promoting and antiapoptotic signaling properties. IMPLICATIONS: The synthetic BH4, Kuvan, is used to elevate BH4:BH2 in some phenylketonuria patients and to treat diseases associated with endothelial dysfunction, suggesting a novel, testable approach for correcting an abnormality of tumor metabolism to control tumor growth.


Assuntos
Progressão da Doença , Neoplasias/metabolismo , Neoplasias/patologia , Óxido Nítrico Sintase/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Xenoenxertos , Humanos , Camundongos Nus , NF-kappa B/metabolismo , Ácido Peroxinitroso/metabolismo , Pterinas/metabolismo , Superóxidos/metabolismo , Fator de Transcrição 4 , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo
9.
J Pharmacol Exp Ther ; 347(1): 117-25, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23912334

RESUMO

The effects of modulating tetrahydrobiopterin (BH4) levels with a metabolic precursor, sepiapterin (SP), on dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)-induced colorectal cancer were studied. SP in the drinking water blocks DSS-induced colitis measured as decreased disease activity index (DAI), morphologic criteria, and recovery of Ca(2+)-induced contractility responses lost as a consequence of DSS treatment. SP reduces inflammatory responses measured as the decreased number of infiltrating inflammatory macrophages and neutrophils and decreased expression of proinflammatory cytokines interleukin 1ß (IL-1ß), IL-6, and IL-17A. High-performance liquid chromatography analyses of colonic BH4 and its oxidized derivative 7,8-dihydrobiopterin (BH2) are inconclusive although there was a trend for lower BH4:BH2 with DSS treatment that was reversed with SP. Reduction of colonic cGMP levels by DSS was reversed with SP by a mechanism sensitive to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a specific inhibitor of the NO-sensitive soluble guanylate cyclase (sGC). ODQ abrogates the protective effects of SP on colitis. This plus the finding that SP reduces DSS-enhanced protein Tyr nitration are consistent with DSS-induced uncoupling of NOS. The results agree with previous studies that demonstrated inactivation of sGC in DSS-treated animals as being important in recruitment of inflammatory cells and in altered cholinergic signaling and colon motility. SP also reduces the number of colon tumors in AOM/DSS-treated mice from 7 to 1 per unit colon length. Thus, pharmacologic modulation of BH4 with currently available drugs may provide a mechanism for alleviating some forms of colitis and potentially minimizing the potential for colorectal cancer in patients with colitis.


Assuntos
Azoximetano/toxicidade , Colite/induzido quimicamente , Colite/prevenção & controle , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/prevenção & controle , Pterinas/uso terapêutico , Animais , Colite/patologia , Neoplasias do Colo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos
10.
Int J Radiat Oncol Biol Phys ; 78(2): 547-54, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20584581

RESUMO

PURPOSE: To identify temporal changes in protein expression in the irradiated rat lung and generate putative mechanisms underlying the radioprotective effect of the manganese superoxide dismutase mimetic MnTE-2-PyP(5+). METHODS AND MATERIALS: Female Fischer 344 rats were irradiated to the right hemithorax with a single dose of 28 Gy and killed from day 1 to 20 weeks after irradiation. Proteomic profiling was performed to identify proteins that underwent significant changes in abundance. Some irradiated rats were administered MnTE-2-PyP(5+) and changes in protein expression and phosphorylation determined at 6 weeks after irradiation. RESULTS: Radiation induced a biphasic stress response in the lung, as shown by the induction of heme oxygenase 1 at 1-3 days and at 6-8 weeks after irradiation. At 6-8 weeks after irradiation, the down-regulation of proteins involved in cytoskeletal architecture (filamin A and talin), antioxidant defense (biliverdin reductase and peroxiredoxin II), and cell signaling (ß-catenin, annexin II, and Rho-guanosine diphosphate dissociation inhibitor) was observed. Treatment with MnTE-2-PyP(5+) partially prevented the apparent degradation of filamin and talin, reduced the level of cleaved caspases 3 and 9, and promoted Akt phosphorylation as well as ß-catenin expression. CONCLUSION: A significant down-regulation of proteins and an increase in protein markers of apoptosis were observed at the onset of lung injury in the irradiated rat lung. Treatment with MnTE-2-PyP(5+), which has been demonstrated to reduce lung injury from radiation, reduced apparent protein degradation and apoptosis indicators, suggesting that preservation of lung structural integrity and prevention of cell loss may underlie the radioprotective effect of this compound.


Assuntos
Pulmão/efeitos da radiação , Metaloporfirinas/farmacologia , Proteínas/metabolismo , Lesões Experimentais por Radiação/metabolismo , Protetores contra Radiação/farmacologia , Animais , Anexina A2/metabolismo , Apoptose , Caspase 9/metabolismo , Proteínas Contráteis/metabolismo , Regulação para Baixo , Feminino , Filaminas , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Heme Oxigenase-1/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Proteínas dos Microfilamentos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Peroxirredoxinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Doses de Radiação , Lesões Experimentais por Radiação/prevenção & controle , Ratos , Ratos Endogâmicos F344 , Talina/metabolismo , Fatores de Tempo , beta Catenina/metabolismo , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
11.
J Pharmacol Exp Ther ; 334(3): 1042-50, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20551293

RESUMO

Our previous studies have demonstrated that an increase in intracellular levels of Ca(2+) in neurons is an important component of both the antinociception produced by morphine and morphine's tolerance. The present study tested the hypothesis that the Ca(2+) signaling second messenger, cyclic ADP-ribose (cADPR), derived from CD38 activation participates in morphine antinociception and tolerance. We first showed that morphine's antinociceptive potency was increased by the intracerebroventricular injection of CD38 substrate beta-NAD(+) in mice. Furthermore, morphine tolerance was reversed by intracerebroventricular administration of each of three different inhibitors of the CD38-cADPR-ryanodine receptor Ca(2+) signaling pathway. These inhibitors were the ADP-ribosylcyclase inhibitor nicotinamide, cADPR analog 8-bromo-cADPR, and a large dose of ryanodine (>50 muM) that blocks the ryanodine receptor. In CD38 gene knockout [CD38(-/-)] mice, the antinociceptive action of morphine was found to be less potent compared with wild-type (WT) mice, as measured by tail-flick response, hypothermia assay, and observations of straub tail. However, there was no difference in locomotor activation between CD38(-/-) and WT animals. It was also found that less tolerance to morphine developed in CD38(-/-) mice compared with WT animals. These results indicate that cADRP-ryanodine receptor Ca(2+) signaling associated with CD38 plays an important role in morphine tolerance.


Assuntos
ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/fisiologia , Analgésicos Opioides/farmacologia , Morfina/farmacologia , Dor/tratamento farmacológico , Animais , ADP-Ribose Cíclica/metabolismo , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Temperatura Alta , Hipotermia/induzido quimicamente , Hipotermia/fisiopatologia , Imersão/fisiopatologia , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , NAD/farmacologia , Niacinamida/farmacologia , Medição da Dor/efeitos dos fármacos , Tempo de Reação , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos
12.
Biochemistry ; 46(42): 11671-83, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17910475

RESUMO

The NF-kappaB family of transcription factors is an important component of stress-activated cytoprotective signal transduction pathways. Previous studies demonstrated that some activation mechanisms require phosphorylation, ubiquitination, and degradation of the inhibitor protein, IkappaBalpha. Herein, it is demonstrated that ionizing radiation in the therapeutic dose range stimulates NF-kappaB activity by a mechanism in which IkappaBalpha tyrosine 181 is nitrated as a consequence of constitutive NO* synthase activation, leading to dissociation of intact IkappaBalpha from NF-kappaB. This mechanism does not appear to require IkappaBalpha kinase-dependent phosphorylation or proteolytic degradation of IkappaBalpha. Tyrosine 181 is involved in several noncovalent interactions with the p50 subunit of NF-kappaB stabilizing the IkappaBalpha-NF-kappaB complex. Evaluation of hydropathic interactions of the IkappaBalpha-p50 complex on the basis of the crystal structure of the complex is consistent with nitration disrupting these interactions and dissociating the IkappaBalpha-NF-kappaB complex. Tyrosine nitration is not commonly studied in the context of signal transduction. However, these results indicate that tyrosine nitration is an important post-translational regulatory modification for NF-kappaB activation and possibly for other signaling molecules modulated by mild and transient oxidative and nitrosative stresses.


Assuntos
Proteínas I-kappa B/metabolismo , NF-kappa B/metabolismo , Nitrogênio/metabolismo , Tirosina/metabolismo , Animais , Neoplasias da Mama/patologia , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Relação Dose-Resposta à Radiação , Feminino , Genes Reporter , Humanos , Cinética , Luciferases/metabolismo , Modelos Moleculares , Mutação , Inibidor de NF-kappaB alfa , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/genética , Ressonância Magnética Nuclear Biomolecular , Oxidantes/farmacologia , Ácido Peroxinitroso/farmacologia , Processamento de Proteína Pós-Traducional , Teoria Quântica , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Transfecção , Tirosina/análogos & derivados , Tirosina/química , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA