Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
bioRxiv ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39314465

RESUMO

Patients with congenital heart disease (CHD) resulting in significant left-to-right shunting of blood are at risk for the development of pulmonary arterial hypertension (PAH). The underlying mechanism by which pulmonary overcirculation and shear stress lead to vascular remodeling remains unclear. Our study established a new "two-hit" murine model of severe pulmonary hypertension (PH) by combining left pneumonectomy and exposure to hypoxia (LP/Hx). Utilizing transgenic reporter lines, immunofluorescence staining, and advanced microscopy, we conducted cell-lineage tracing experiments for endothelial cells (ECs), smooth muscle cells (SMCs), and pericytes. We identified that SMCs is a primary contributor to distal arteriolar remodeling after LP/Hx. Subsequent qPCR analysis on isolated cells demonstrated that Cxcl12 was upregulated in both ECs and SMCs from LP/Hx animals. Likewise, CXCL12 was overexpressed in the SMC layer of arterioles in patients with acyanotic PAH-CHD. These findings provide novel insights into the contribution of SMCs and Cxcl12 to pulmonary flow-induced vascular remodeling. This newly established murine model of PH will serve as a new tool for research and targeted therapeutics for patients with PAH.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39133466

RESUMO

RATIONALE: Some with interstitial lung abnormalities (ILA) have suspected interstitial lung disease (ILD), a subgroup with adverse outcomes. Rates of development and progression of suspected ILD and their effect on mortality are unknown. OBJECTIVES: To determine rates of development and progression of suspected ILD and assess effects of individual ILD and progression criteria on mortality. METHODS: Participants from COPDGene were included. ILD was defined as ILA and fibrosis and/or FVC <80% predicted. Prevalent ILD was assessed at enrollment, incident ILD and progression at 5-year follow-up. CT progression was assessed visually and FVC decline as relative change. Multivariable Cox regression tested associations between mortality and ILD groups. RESULTS: Of 9,588 participants at enrollment, 267 (2.8%) had prevalent ILD. Those with prevalent ILD had 52% mortality after median 10.6 years, which was higher than ILA (33%; HR=2.0; p<0.001). The subgroup of prevalent ILD with fibrosis only had worse mortality (59%) than ILA (HR=2.2; p<0.001). 97 participants with prevalent ILD completed 5-year follow-up: 32% had stable CT and relative FVC decline <10%, 6% FVC decline ≥10% only, 39% CT progression only, and 22% both CT progression and FVC decline ≥10%. Mortality rates were 32%, 50%, 45%, and 46% respectively; those with CT progression only had worse mortality than ILA (HR=2.6; p=0.005). At 5-year follow-up, incident ILD occurred in 168/4,843 participants without prevalent ILD and had worse mortality than ILA (HR=2.5; p<0.001). CONCLUSION: Rates of mortality and progression are high among those with suspected ILD in COPDGene; fibrosis and radiologic progression are important predictors of mortality.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38737375

RESUMO

Released mitochondrial DNA (mtDNA) in cells activates cGAS-STING pathway, which induces expression of interferon-stimulated genes (ISGs) and thereby promotes inflammation, as frequently seen in asthmatic airways. However, whether the genetic determinant, Gasdermin B (GSDMB), the most replicated asthma risk gene, regulates this pathway remains unknown. We set out to determine whether and how GSDMB regulates mtDNA-activated cGAS-STING pathway and subsequent ISGs induction in human airway epithelial cells. Using qPCR, ELISA, native polyacrylamide gel electrophoresis, co-immunoprecipitation and immunofluorescence assays, we evaluated the regulation of GSDMB on cGAS-STING pathway in both BEAS-2B cells and primary normal human bronchial epithelial cells (nHBEs). mtDNA was extracted in plasma samples from human asthmatics and the correlation between mtDNA levels and eosinophil counts was analyzed. GSDMB is significantly associated with RANTES expression in asthmatic nasal epithelial brushing samples from the Genes-environments and Admixture in Latino Americans (GALA) II study. Over-expression of GSDMB promotes DNA-induced IFN and ISGs expression in bronchial epithelial BEAS-2B cells and nHBEs. Conversely, knockout of GSDMB led to weakened induction of interferon (IFNs) and ISGs in BEAS-2B cells. Mechanistically, GSDMB interacts with the C-terminus of STING, promoting the translocation of STING to Golgi, leading to the phosphorylation of IRF3 and induction of IFNs and ISGs. mtDNA copy number in serum from asthmatics was significantly correlated with blood eosinophil counts especially in male subjects. GSDMB promotes the activation of mtDNA and poly (dA:dT)-induced activation of cGAS-STING pathway in airway epithelial cells, leading to enhanced induction of ISGs.

4.
Obes Surg ; 34(7): 2467-2474, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753264

RESUMO

PURPOSE: Obesity exerts negative effects on pulmonary function through proven mechanical and biochemical pathways. Multiple studies have suggested that bariatric surgery can improve lung function. However, the timing of these effects on lung function and its association with patient reported outcomes is not known. MATERIALS AND METHODS: A prospective cohort study of patients undergoing laparoscopic sleeve gastrectomy (LSG) at a tertiary care hospital was undertaken. Spirometry tests, laboratory tests, and self-reported questionnaires on asthma symptoms and asthma control (ACQ and ACT) were administered. All data were recorded pre-operatively (T0) and every 3 months post-operatively for 1 year (T3, T6, T9, T12) and were compared using a mixed-models approach for repeated measures. RESULTS: For the 23 participants, mean age was 44.2 ± 12.3 years, mean BMI was 45.2 ± 7.2 kg/m2, 18(78%) were female, 9(39%) self-reported as non-white and 6(26%) reported to have asthma. Following LSG, % total body weight loss was significant at all follow-up points (P < 0.0001). Rapid improvement in forced expiratory volume (FEV)% predicted and forced vital capacity (FVC)% predicted was seen at T3. Although the overall ACQ and ACT score remained within normal range throughout the study, shortness of breath declined significantly at 3 months post-op (P < 0.05) and wheezing resolved for all patients by twelve months. Patients also reported reduced frequency of sleep interruption and inability to exercise by the end of the study (P < 0.05). CONCLUSION: Improvements in objective lung function assessments and patient-reported respiratory outcomes begin as early as 3 months and continue until 12 months after sleeve gastrectomy.


Assuntos
Gastrectomia , Obesidade Mórbida , Medidas de Resultados Relatados pelo Paciente , Redução de Peso , Humanos , Feminino , Masculino , Adulto , Estudos Prospectivos , Obesidade Mórbida/cirurgia , Obesidade Mórbida/fisiopatologia , Obesidade Mórbida/complicações , Gastrectomia/métodos , Redução de Peso/fisiologia , Pessoa de Meia-Idade , Volume Expiratório Forçado , Pulmão/fisiopatologia , Capacidade Vital , Asma/fisiopatologia , Resultado do Tratamento , Laparoscopia , Testes de Função Respiratória
5.
Pediatr Crit Care Med ; 25(7): 599-608, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591949

RESUMO

OBJECTIVES: The Pediatric Acute Respiratory Distress Syndrome Biomarker Risk Model (PARDSEVERE) used age and three plasma biomarkers measured within 24 hours of pediatric acute respiratory distress syndrome (ARDS) onset to predict mortality in a pilot cohort of 152 patients. However, longitudinal performance of PARDSEVERE has not been evaluated, and it is unclear whether the risk model can be used to prognosticate after day 0. We, therefore, sought to determine the test characteristics of PARDSEVERE model and population over the first 7 days after ARDS onset. DESIGN: Secondary unplanned post hoc analysis of data from a prospective observational cohort study carried out 2014-2019. SETTING: University-affiliated PICU. PATIENTS: Mechanically ventilated children with ARDS. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Between July 2014 and December 2019, 279 patients with ARDS had plasma collected at day 0, 266 at day 3 (11 nonsurvivors, two discharged between days 0 and 3), and 207 at day 7 (27 nonsurvivors, 45 discharged between days 3 and 7). The actual prevalence of mortality on days 0, 3, and 7, was 23% (64/279), 14% (38/266), and 13% (27/207), respectively. The PARDSEVERE risk model for mortality on days 0, 3, and 7 had area under the receiver operating characteristic curve (AUROC [95% CI]) of 0.76 (0.69-0.82), 0.68 (0.60-0.76), and 0.74 (0.65-0.83), respectively. The AUROC data translate into prevalence thresholds for the PARDSEVERE model for mortality (i.e., using the sensitivity and specificity values) of 37%, 27%, and 24% on days 0, 3, and 7, respectively. Negative predictive value (NPV) was high throughout (0.87-0.90 for all three-time points). CONCLUSIONS: In this exploratory analysis of the PARDSEVERE model of mortality risk prediction in a population longitudinal series of data from days 0, 3, and 7 after ARDS diagnosis, the diagnostic performance is in the "acceptable" category. NPV was good. A major limitation is that actual mortality is far below the prevalence threshold for such testing. The model may, therefore, be more useful in cohorts with higher mortality rates (e.g., immunocompromised, other countries), and future enhancements to the model should be explored.


Assuntos
Biomarcadores , Unidades de Terapia Intensiva Pediátrica , Respiração Artificial , Síndrome do Desconforto Respiratório , Humanos , Biomarcadores/sangue , Feminino , Masculino , Criança , Pré-Escolar , Medição de Risco/métodos , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/terapia , Estudos Prospectivos , Lactente , Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Estudos Longitudinais , Respiração Artificial/estatística & dados numéricos , Adolescente , Prognóstico , Curva ROC
6.
Genes (Basel) ; 15(4)2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674355

RESUMO

Inhaled corticosteroids (ICS) are efficacious in the treatment of asthma, which affects more than 300 million people in the world. While genome-wide association studies have identified genes involved in differential treatment responses to ICS in asthma, few studies have evaluated the effects of combined rare and common variants on ICS response among children with asthma. Among children with asthma treated with ICS with whole exome sequencing (WES) data in the PrecisionLink Biobank (91 White and 20 Black children), we examined the effect and contribution of rare and common variants with hospitalizations or emergency department visits. For 12 regions previously associated with asthma and ICS response (DPP10, FBXL7, NDFIP1, TBXT, GLCCI1, HDAC9, TBXAS1, STAT6, GSDMB/ORMDL3, CRHR1, GNGT2, FCER2), we used the combined sum test for the sequence kernel association test (SKAT) adjusting for age, sex, and BMI and stratified by race. Validation was conducted in the Biorepository and Integrative Genomics (BIG) Initiative (83 White and 134 Black children). Using a Bonferroni threshold for the 12 regions tested (i.e., 0.05/12 = 0.004), GSDMB/ORMDL3 was significantly associated with ICS response for the combined effect of rare and common variants (p-value = 0.003) among White children in the PrecisionLink Biobank and replicated in the BIG Initiative (p-value = 0.02). Using WES data, the combined effect of rare and common variants for GSDMB/ORMDL3 was associated with ICS response among asthmatic children in the PrecisionLink Biobank and replicated in the BIG Initiative. This proof-of-concept study demonstrates the power of biobanks of pediatric real-life populations in asthma genomic investigations.


Assuntos
Corticosteroides , Asma , Gasderminas , Proteínas de Membrana , Humanos , Asma/tratamento farmacológico , Asma/genética , Criança , Feminino , Masculino , Corticosteroides/uso terapêutico , Corticosteroides/administração & dosagem , Administração por Inalação , Proteínas de Membrana/genética , Estudo de Associação Genômica Ampla , Adolescente , Pré-Escolar , Sequenciamento do Exoma , Polimorfismo de Nucleotídeo Único
7.
Eur Respir J ; 63(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514093

RESUMO

RATIONALE: Respiratory virus-induced inflammation is the leading cause of asthma exacerbation, frequently accompanied by induction of interferon-stimulated genes (ISGs). How asthma-susceptibility genes modulate cellular response upon viral infection by fine-tuning ISG induction and subsequent airway inflammation in genetically susceptible asthma patients remains largely unknown. OBJECTIVES: To decipher the functions of gasdermin B (encoded by GSDMB) in respiratory virus-induced lung inflammation. METHODS: In two independent cohorts, we analysed expression correlation between GSDMB and ISG s. In human bronchial epithelial cell line or primary bronchial epithelial cells, we generated GSDMB-overexpressing and GSDMB-deficient cells. A series of quantitative PCR, ELISA and co-immunoprecipitation assays were performed to determine the function and mechanism of GSDMB for ISG induction. We also generated a novel transgenic mouse line with inducible expression of human unique GSDMB gene in airway epithelial cells and infected the mice with respiratory syncytial virus to determine the role of GSDMB in respiratory syncytial virus-induced lung inflammation in vivo. RESULTS: GSDMB is one of the most significant asthma-susceptibility genes at 17q21 and acts as a novel RNA sensor, promoting mitochondrial antiviral-signalling protein (MAVS)-TANK binding kinase 1 (TBK1) signalling and subsequent inflammation. In airway epithelium, GSDMB is induced by respiratory viral infections. Expression of GSDMB and ISGs significantly correlated in respiratory epithelium from two independent asthma cohorts. Notably, inducible expression of human GSDMB in mouse airway epithelium led to enhanced ISGs induction and increased airway inflammation with mucus hypersecretion upon respiratory syncytial virus infection. CONCLUSIONS: GSDMB promotes ISGs expression and airway inflammation upon respiratory virus infection, thereby conferring asthma risk in risk allele carriers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Asma , Gasderminas , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Asma/metabolismo , Asma/genética , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Predisposição Genética para Doença , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/genética , Células Epiteliais/metabolismo , Linhagem Celular , Brônquios/metabolismo , Brônquios/patologia , Pneumonia/metabolismo , Pneumonia/genética , Pneumonia/virologia , Feminino , Pulmão/metabolismo , Pulmão/patologia
8.
EMBO Rep ; 25(2): 616-645, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243138

RESUMO

Vascular remodeling is the process of structural alteration and cell rearrangement of blood vessels in response to injury and is the cause of many of the world's most afflicted cardiovascular conditions, including pulmonary arterial hypertension (PAH). Many studies have focused on the effects of vascular endothelial cells and smooth muscle cells (SMCs) during vascular remodeling, but pericytes, an indispensable cell population residing largely in capillaries, are ignored in this maladaptive process. Here, we report that hypoxia-inducible factor 2α (HIF2α) expression is increased in the lung tissues of PAH patients, and HIF2α overexpressed pericytes result in greater contractility and an impaired endothelial-pericyte interaction. Using single-cell RNAseq and hypoxia-induced pulmonary hypertension (PH) models, we show that HIF2α is a major molecular regulator for the transformation of pericytes into SMC-like cells. Pericyte-selective HIF2α overexpression in mice exacerbates PH and right ventricular hypertrophy. Temporal cellular lineage tracing shows that HIF2α overexpressing reporter NG2+ cells (pericyte-selective) relocate from capillaries to arterioles and co-express SMA. This novel insight into the crucial role of NG2+ pericytes in pulmonary vascular remodeling via HIF2α signaling suggests a potential drug target for PH.


Assuntos
Hipertensão Pulmonar , Remodelação Vascular , Camundongos , Humanos , Animais , Pericitos/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Pulmão
9.
Nucleic Acids Res ; 52(1): e5, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953325

RESUMO

The versatility of cellular response arises from the communication, or crosstalk, of signaling pathways in a complex network of signaling and transcriptional regulatory interactions. Understanding the various mechanisms underlying crosstalk on a global scale requires untargeted computational approaches. We present a network-based statistical approach, MuXTalk, that uses high-dimensional edges called multilinks to model the unique ways in which signaling and regulatory interactions can interface. We demonstrate that the signaling-regulatory interface is located primarily in the intermediary region between signaling pathways where crosstalk occurs, and that multilinks can differentiate between distinct signaling-transcriptional mechanisms. Using statistically over-represented multilinks as proxies of crosstalk, we infer crosstalk among 60 signaling pathways, expanding currently available crosstalk databases by more than five-fold. MuXTalk surpasses existing methods in terms of model performance metrics, identifies additions to manual curation efforts, and pinpoints potential mediators of crosstalk. Moreover, it accommodates the inherent context-dependence of crosstalk, allowing future applications to cell type- and disease-specific crosstalk.


Assuntos
Regulação da Expressão Gênica , Transdução de Sinais , Bases de Dados Factuais , Redes Reguladoras de Genes
10.
Am J Respir Crit Care Med ; 208(7): 791-801, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37523715

RESUMO

Rationale: In addition to rare genetic variants and the MUC5B locus, common genetic variants contribute to idiopathic pulmonary fibrosis (IPF) risk. The predictive power of common variants outside the MUC5B locus for IPF and interstitial lung abnormalities (ILAs) is unknown. Objectives: We tested the predictive value of IPF polygenic risk scores (PRSs) with and without the MUC5B region on IPF, ILA, and ILA progression. Methods: We developed PRSs that included (PRS-M5B) and excluded (PRS-NO-M5B) the MUC5B region (500-kb window around rs35705950-T) using an IPF genome-wide association study. We assessed PRS associations with area under the receiver operating characteristic curve (AUC) metrics for IPF, ILA, and ILA progression. Measurements and Main Results: We included 14,650 participants (1,970 IPF; 1,068 ILA) from six multi-ancestry population-based and case-control cohorts. In cases excluded from genome-wide association study, the PRS-M5B (odds ratio [OR] per SD of the score, 3.1; P = 7.1 × 10-95) and PRS-NO-M5B (OR per SD, 2.8; P = 2.5 × 10-87) were associated with IPF. Participants in the top PRS-NO-M5B quintile had ∼sevenfold odds for IPF compared with those in the first quintile. A clinical model predicted IPF (AUC, 0.61); rs35705950-T and PRS-NO-M5B demonstrated higher AUCs (0.73 and 0.7, respectively), and adding both genetic predictors to a clinical model yielded the highest performance (AUC, 0.81). The PRS-NO-M5B was associated with ILA (OR, 1.25) and ILA progression (OR, 1.16) in European ancestry participants. Conclusions: A common genetic variant risk score complements the MUC5B variant to identify individuals at high risk of interstitial lung abnormalities and pulmonary fibrosis.


Assuntos
Estudo de Associação Genômica Ampla , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/genética , Fatores de Risco , Pulmão , Mucina-5B/genética , Predisposição Genética para Doença
11.
Front Med (Lausanne) ; 10: 1118824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275375

RESUMO

Background: Existing module-based differential co-expression methods identify differences in gene-gene relationships across phenotype or exposure structures by testing for consistent changes in transcription abundance. Current methods only allow for assessment of co-expression variation across a singular, binary or categorical exposure or phenotype, limiting the information that can be obtained from these analyses. Methods: Here, we propose a novel approach for detection of differential co-expression that simultaneously accommodates multiple phenotypes or exposures with binary, ordinal, or continuous data types. Results: We report an application to two cohorts of asthmatic patients with varying levels of asthma control to identify associations between gene co-expression and asthma control test scores. Results suggest that both expression levels and covariances of ADORA3, ALOX15, and IDO1 are associated with asthma control. Conclusion: ACDC is a flexible extension to existing methodology that can detect differential co-expression across varying external variables.

13.
NPJ Genom Med ; 8(1): 7, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878902

RESUMO

A male infant presented at term with neonatal respiratory failure and pulmonary hypertension. His respiratory symptoms improved initially, but he exhibited a biphasic clinical course, re-presenting at 15 months of age with tachypnea, interstitial lung disease, and progressive pulmonary hypertension. We identified an intronic TBX4 gene variant in close proximity to the canonical donor splice site of exon 3 (hg 19; chr17:59543302; c.401 + 3 A > T), also carried by his father who had a typical TBX4-associated skeletal phenotype and mild pulmonary hypertension, and by his deceased sister who died shortly after birth of acinar dysplasia. Analysis of patient-derived cells demonstrated a significant reduction in TBX4 expression resulting from this intronic variant. Our study illustrates the variable expressivity in cardiopulmonary phenotype conferred by TBX4 mutation and the utility of genetic diagnostics in enabling accurate identification and classification of more subtly affected family members.

14.
Am J Respir Crit Care Med ; 207(1): 60-68, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930450

RESUMO

Rationale: Although interstitial lung abnormalities (ILA), specific patterns of incidentally-detected abnormal density on computed tomography, have been associated with abnormal lung function and increased mortality, it is unclear if a subset with incidental interstitial lung disease (ILD) accounts for these adverse consequences. Objectives: To define the prevalence and risk factors of suspected ILD and assess outcomes. Methods: Suspected ILD was evaluated in the COPDGene (Chronic Obstructive Pulmonary Disease Genetic Epidemiology) study, defined as ILA and at least one additional criterion: definite fibrosis on computed tomography, FVC less than 80% predicted, or DLCO less than 70% predicted. Multivariable linear, longitudinal, and Cox proportional hazards regression models were used to assess associations with St. George's Respiratory Questionnaire, 6-minute-walk test, supplemental oxygen use, respiratory exacerbations, and mortality. Measurements and Main Results: Of 4,361 participants with available data, 239 (5%) had evidence for suspected ILD, whereas 204 (5%) had ILA without suspected ILD. In multivariable analyses, suspected ILD was associated with increased St. George's Respiratory Questionnaire score (mean difference [MD], 3.9 points; 95% confidence interval [CI], 0.6-7.1; P = 0.02), reduced 6-minute-walk test (MD, -35 m; 95% CI, -56 m to -13 m; P = 0.002), greater supplemental oxygen use (odds ratio [OR], 2.3; 95% CI, 1.1-5.1; P = 0.03) and severe respiratory exacerbations (OR, 2.9; 95% CI, 1.1-7.5; P = 0.03), and higher mortality (hazard ratio, 2.4; 95% CI, 1.2-4.6; P = 0.01) compared with ILA without suspected ILD. Risk factors associated with suspected ILD included self-identified Black race (OR, 2.0; 95% CI, 1.1-3.3; P = 0.01) and pack-years smoking history (OR, 1.2; 95% CI, 1.1-1.3; P = 0.0005). Conclusions: Suspected ILD is present in half of those with ILA in COPDGene and is associated with exercise decrements and increased symptoms, supplemental oxygen use, severe respiratory exacerbations, and mortality.


Assuntos
Doenças Pulmonares Intersticiais , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/epidemiologia , Doenças Pulmonares Intersticiais/genética , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/complicações , Fumar , Oxigênio
16.
Hum Mol Genet ; 32(4): 696-707, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36255742

RESUMO

BACKGROUND: Asthma is a heterogeneous common respiratory disease that remains poorly understood. The established genetic associations fail to explain the high estimated heritability, and the prevalence of asthma differs between populations and geographic regions. Robust association analyses incorporating different genetic ancestries and whole-genome sequencing data may identify novel genetic associations. METHODS: We performed family-based genome-wide association analyses of childhood-onset asthma based on whole-genome sequencing (WGS) data for the 'The Genetic Epidemiology of Asthma in Costa Rica' study (GACRS) and the Childhood Asthma Management Program (CAMP). Based on parent-child trios with children diagnosed with asthma, we performed a single variant analysis using an additive and a recessive genetic model and a region-based association analysis of low-frequency and rare variants. RESULTS: Based on 1180 asthmatic trios (894 GACRS trios and 286 CAMP trios, a total of 3540 samples with WGS data), we identified three novel genetic loci associated with childhood-onset asthma: rs4832738 on 4p14 ($P=1.72\ast{10}^{-9}$, recessive model), rs1581479 on 8p22 ($P=1.47\ast{10}^{-8}$, additive model) and rs73367537 on 10q26 ($P=1.21\ast{10}^{-8}$, additive model in GACRS only). Integrative analyses suggested potential novel candidate genes underlying these associations: PGM2 on 4p14 and FGF20 on 8p22. CONCLUSION: Our family-based whole-genome sequencing analysis identified three novel genetic loci for childhood-onset asthma. Gene expression data and integrative analyses point to PGM2 on 4p14 and FGF20 on 8p22 as linked genes. Furthermore, region-based analyses suggest independent potential low-frequency/rare variant associations on 8p22. Follow-up analyses are needed to understand the functional mechanisms and generalizability of these associations.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Humanos , Predisposição Genética para Doença , Asma/genética , Loci Gênicos , Sequenciamento Completo do Genoma , Polimorfismo de Nucleotídeo Único/genética , Fatores de Crescimento de Fibroblastos/genética
17.
Genet Med ; 24(10): 2065-2078, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35980381

RESUMO

PURPOSE: Nonmuscle myosin II complexes are master regulators of actin dynamics that play essential roles during embryogenesis with vertebrates possessing 3 nonmuscle myosin II heavy chain genes, MYH9, MYH10, and MYH14. As opposed to MYH9 and MYH14, no recognizable disorder has been associated with MYH10. We sought to define the clinical characteristics and molecular mechanism of a novel autosomal dominant disorder related to MYH10. METHODS: An international collaboration identified the patient cohort. CAS9-mediated knockout cell models were used to explore the mechanism of disease pathogenesis. RESULTS: We identified a cohort of 16 individuals with heterozygous MYH10 variants presenting with a broad spectrum of neurodevelopmental disorders and variable congenital anomalies that affect most organ systems and were recapitulated in animal models of altered MYH10 activity. Variants were typically de novo missense changes with clustering observed in the motor domain. MYH10 knockout cells showed defects in primary ciliogenesis and reduced ciliary length with impaired Hedgehog signaling. MYH10 variant overexpression produced a dominant-negative effect on ciliary length. CONCLUSION: These data presented a novel genetic cause of isolated and syndromic neurodevelopmental disorders related to heterozygous variants in the MYH10 gene with implications for disrupted primary cilia length control and altered Hedgehog signaling in disease pathogenesis.


Assuntos
Transtornos do Neurodesenvolvimento , Miosina não Muscular Tipo IIB , Actinas , Cílios/genética , Proteínas Hedgehog/genética , Humanos , Cadeias Pesadas de Miosina/genética , Transtornos do Neurodesenvolvimento/genética , Miosina não Muscular Tipo IIB/genética
18.
Front Cardiovasc Med ; 9: 876591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722109

RESUMO

Pericytes are mesenchymal-derived mural cells that wrap around capillaries and directly contact endothelial cells. Present throughout the body, including the cardiovascular system, pericytes are proposed to have multipotent cell-like properties and are involved in numerous biological processes, including regulation of vascular development, maturation, permeability, and homeostasis. Despite their physiological importance, the functional heterogeneity, differentiation process, and pathological roles of pericytes are not yet clearly understood, in part due to the inability to reliably distinguish them from other mural cell populations. Our study focused on identifying pericyte-specific markers by analyzing single-cell RNA sequencing data from tissue-specific mouse pericyte populations generated by the Tabula Muris Senis. We identified the mural cell cluster in murine lung, heart, kidney, and bladder that expressed either of two known pericyte markers, Cspg4 or Pdgfrb. We further defined pericytes as those cells that co-expressed both markers within this cluster. Single-cell differential expression gene analysis compared this subset with other clusters that identified potential pericyte marker candidates, including Kcnk3 (in the lung); Rgs4 (in the heart); Myh11 and Kcna5 (in the kidney); Pcp4l1 (in the bladder); and Higd1b (in lung and heart). In addition, we identified novel markers of tissue-specific pericytes and signaling pathways that may be involved in maintaining their identity. Moreover, the identified markers were further validated in Human Lung Cell Atlas and human heart single-cell RNAseq databases. Intriguingly, we found that markers of heart and lung pericytes in mice were conserved in human heart and lung pericytes. In this study, we, for the first time, identified specific pericyte markers among lung, heart, kidney, and bladder and reveal differentially expressed genes and functional relationships between mural cells.

19.
Cell Rep ; 39(2): 110662, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417699

RESUMO

Lung progenitor cells are crucial for regeneration following injury, yet it is unclear whether lung progenitor cells can be functionally engrafted after transplantation. We transplanted organoid cells derived from alveolar type II (AT2) cells enriched by SCA1-negative status (SNO) or multipotent SCA1-positive progenitor cells (SPO) into injured mouse lungs. Transplanted SNO cells are retained in the alveolar regions, whereas SPO cells incorporate into airway and alveolar regions. Single-cell transcriptomics demonstrate that transplanted SNO cells are comparable to native AT2 cells. Transplanted SPO cells exhibit transcriptional hallmarks of alveolar and airway cells, as well as transitional cell states identified in disease. Transplanted cells proliferate after re-injury of recipient mice and retain organoid-forming capacity. Thus, lung epithelial organoid cells exhibit progenitor cell functions after reintroduction to the lung. This study reveals methods to interrogate lung progenitor cell potential and model transitional cell states relevant to pathogenic features of lung disease in vivo.


Assuntos
Organoides , Ataxias Espinocerebelares , Animais , Diferenciação Celular , Células Epiteliais , Pulmão , Camundongos , Células-Tronco
20.
Am J Respir Cell Mol Biol ; 66(6): 661-670, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35353673

RESUMO

The genome-wide association study (GWAS)-identified asthma susceptibility risk alleles on chromosome 17q21 increase the expression of ORMDL3 (ORMDL sphingolipid biosynthesis regulator 3) in lung tissue. Given the importance of epithelial integrity in asthma, we hypothesized that ORMDL3 directly impacted bronchial epithelial function. To determine whether and how ORMDL3 expression impacts the bronchial epithelium, in studies using both primary human bronchial epithelial cells and human bronchial epithelial cell line, 16HBE (16HBE14o-), we assessed the impact of ORMDL3 on autophagy. Studies included: autophagosome detection by electron microscopy, RFP-GFP-LC3B to assess autophagic activity, and Western blot analysis of autophagy-related proteins. Mechanistic assessments included immunoprecipitation assays, intracellular calcium mobilization assessments, and cell viability assays. Coexpression of ORMDL3 and autophagy-related genes was measured in primary human bronchial epithelial cells derived from 44 subjects. Overexpressing ORMDL3 demonstrated increased numbers of autophagosomes and increased levels of autophagy-related proteins LC3B, ATG3, ATG7, and ATG16L1. ORMDL3 overexpression promotes autophagy and subsequent cell death by impairing intracellular calcium mobilization through interacting with SERCA2. Strong correlation was observed between expression of ORMDL3 and autophagy-related genes in patient-derived bronchial epithelial cells. Increased ORMDL3 expression induces autophagy, possibly through interacting with SERCA2, thereby inhibiting intracellular calcium influx, and induces cell death, impairing bronchial epithelial function in asthma.


Assuntos
Asma , Proteínas de Membrana , Asma/genética , Asma/metabolismo , Asma/patologia , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cálcio/metabolismo , Epitélio/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA