Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(4): e0123645, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25856387

RESUMO

The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva.


Assuntos
Infecções por Vírus Epstein-Barr/enzimologia , Neoplasias Nasofaríngeas/genética , Nasofaringe/enzimologia , Telomerase/biossíntese , Carcinoma , Replicação do DNA/genética , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/enzimologia , Neoplasias Nasofaríngeas/patologia , Nasofaringe/patologia , Telomerase/genética
2.
Pediatr Surg Int ; 30(2): 213-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24363059

RESUMO

PURPOSE: It is unclear whether dermal fibroblasts are indispensable key players for tissue engineering of dermo-epidermal skin analogs. In this experimental study, we wanted to test the hypothesis that tonsil-derived mesenchymal cells can assume the role of dermal fibroblasts when culturing pigmented skin analogs for transplantation. METHODS: Mesenchymal cells from excised tonsils and keratinocytes, melanocytes, and fibroblasts from skin biopsies were isolated, cultured, and expanded. Melanocytes and keratinocytes were seeded in a ratio of 1:5 onto collagen gels previously populated either with tonsil-derived mesenchymal cells or with autologous dermal fibroblasts. These laboratory engineered skin analogs were then transplanted onto full-thickness wounds of immuno-incompetent rats and analyzed after 3 weeks with regard to macroscopic and microscopic epidermal characteristics. RESULTS: The skin analogs containing tonsil-derived mesenchymal cells showed the same macroscopic appearance as the ones containing dermal fibroblasts. Histologically, features of epidermal stratification, pigmentation, and cornification were identical to those of the controls assembled with autologous dermal fibroblasts. Transmission electron microscopy confirmed these findings. CONCLUSION: These data suggest that human tonsil-derived mesenchymal cells can assume dermal fibroblast functions, indicating that possibly various types of mesenchymal cells can successfully be employed for "skingineering" purposes. This aspect may have clinical implications when sources for dermal fibroblasts are scarce.


Assuntos
Fibroblastos/citologia , Queratinócitos/citologia , Melanócitos/citologia , Tonsila Palatina/citologia , Transplante de Pele/métodos , Pele/citologia , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Derme/citologia , Derme/transplante , Feminino , Fibroblastos/transplante , Prepúcio do Pênis , Humanos , Queratinócitos/transplante , Masculino , Melanócitos/transplante , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Microscopia Eletrônica de Transmissão/métodos , Modelos Animais , Ratos , Pigmentação da Pele/fisiologia , Ferimentos e Lesões/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA