Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cancer ; 129(16): 2479-2490, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37185873

RESUMO

BACKGROUND: Obesity (body mass index [BMI] ≥30 kg/m2 ) is an important epidemiological risk factor for developing acute myeloid leukemia (AML). Therefore, the authors studied the association of obesity with clinical and genetic phenotype and its impact on outcome in adults with AML. METHODS: The authors analyzed BMI in 1088 adults who were receiving intensive remission induction and consolidation therapy in two prospective, randomized therapeutic clinical trials of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network: E1900 (ClinicalTrials.gov identifier NCT00049517; patients younger than 60 years) and E3999 (ClinicalTrials.gov identifier NCT00046930; patients aged 60 years or older). RESULTS: Obesity was prevalent at diagnosis (33%) and, compared with nonobesity, was associated with intermediate-risk cytogenetics group (p = .008), poorer performance status (p = .01), and a trend toward older age (p = .06). Obesity was not associated with somatic mutations among a selected 18-gene panel that was tested in a subset of younger patients. Obesity was not associated with clinical outcome (including complete remission, early death, or overall survival), and the authors did not identify any patient subgroup that had inferior outcomes based on BMI. Obese patients were significantly more likely to receive <90% of the intended daunorubicin dose despite protocol specification, particularly in the E1900 high-dose (90 mg/m2 ) daunorubicin arm (p = .002); however, this did not correlate with inferior overall survival on multivariate analysis (hazard ratio, 1.39; 95% confidence interval, 0.90-2.13; p = .14). CONCLUSIONS: Obesity is associated with unique clinical and disease-related phenotypic features in AML and may influence physician treatment decisions regarding daunorubicin dosing. However, the current study demonstrates that obesity is not a factor in survival, and strict adherence to body surface area-based dosing is not necessary because dose adjustments do not affect outcomes.


Assuntos
Antraciclinas , Leucemia Mieloide Aguda , Humanos , Antraciclinas/uso terapêutico , Antibióticos Antineoplásicos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Citarabina , Daunorrubicina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Obesidade/complicações , Estudos Prospectivos , Indução de Remissão , Pessoa de Meia-Idade , Idoso , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Leuk Res ; 123: 106971, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332294

RESUMO

Measurable residual disease (MRD) assessment provides a potent indicator of the efficacy of anti-leukemic therapy. It is unknown, however, whether integrating MRD with molecular profiling better identifies patients at risk of relapse. To investigate the clinical relevance of MRD in relation to a molecular-based prognostic schema, we measured MRD by flow cytometry in 189 AML patients enrolled in ECOG-ACRIN E1900 trial (NCT00049517) in morphologic complete remission (CR) (28.8 % of the original cohort) representing 44.4 % of CR patients. MRD positivity was defined as ≥ 0.1 % of leukemic bone marrow cells. Risk classification was based on standard cytogenetics, fluorescence-in-situ-hybridization, somatic gene analysis, and sparse whole genome sequencing for copy number ascertainment. At 84.6 months median follow-up of patients still alive at the time of analysis (range 47.0-120 months), multivariate analysis demonstrated that MRD status at CR (p = 0.001) and integrated molecular risk (p = 0.0004) independently predicted overall survival (OS). Among risk classes, MRD status significantly affected OS only in the favorable risk group (p = 0.002). Expression of CD25 (α-chain of the interleukin-2 receptor) by leukemic myeloblasts at diagnosis negatively affected OS independent of post-treatment MRD levels. These data suggest that integrating MRD with genetic profiling and pre-treatment CD25 expression may improve prognostication in AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Citometria de Fluxo , Genômica , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Neoplasia Residual/genética , Neoplasia Residual/diagnóstico , Prognóstico
3.
Blood ; 138(11): 948-958, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-33895809

RESUMO

Genomic classification has improved risk assignment of pediatric, but not adult B-lineage acute lymphoblastic leukemia (B-ALL). The international UKALLXII/ECOG-ACRIN E2993 (#NCT00002514) trial accrued 1229 adolescent/adult patients with BCR-ABL1- B-ALL (aged 14 to 65 years). Although 93% of patients achieved remission, 41% relapsed at a median of 13 months (range, 28 days to 12 years). Five-year overall survival (OS) was 42% (95% confidence interval, 39, 44). Transcriptome sequencing, gene expression profiling, cytogenetics, and fusion polymerase chain reaction enabled genomic subtyping of 282 patient samples, of which 264 were eligible for trial, accounting for 64.5% of E2993 patients. Among patients with outcome data, 29.5% with favorable outcomes (5-year OS 65% to 80%) were deemed standard risk (DUX4-rearranged [9.2%], ETV6-RUNX1/-like [2.3%], TCF3-PBX1 [6.9%], PAX5 P80R [4.1%], high-hyperdiploid [6.9%]); 50.2% had high-risk genotypes with 5-year OS of 0% to 27% (Ph-like [21.2%], KMT2A-AFF1 [12%], low-hypodiploid/near-haploid [14.3%], BCL2/MYC-rearranged [2.8%]); 20.3% had intermediate-risk genotypes with 5-year OS of 33% to 45% (PAX5alt [12.4%], ZNF384/-like [5.1%], MEF2D-rearranged [2.8%]). IKZF1 alterations occurred in 86% of Ph-like, and TP53 mutations in patients who were low-hypodiploid (54%) and BCL2/MYC-rearranged (33%) but were not independently associated with outcome. Of patients considered high risk based on presenting age and white blood cell count, 40% harbored subtype-defining genetic alterations associated with standard- or intermediate-risk outcomes. We identified distinct immunophenotypic features for DUX4-rearranged, PAX5 P80R, ZNF384-R/-like, and Ph-like genotypes. These data in a large adult B-ALL cohort treated with a non-risk-adapted approach on a single trial show the prognostic importance of genomic analyses, which may translate into future therapeutic benefits.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Transcriptoma , Adolescente , Adulto , Feminino , Rearranjo Gênico , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Prognóstico , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-bcr/genética , Medição de Risco , Adulto Jovem
4.
Nat Genet ; 51(2): 296-307, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643249

RESUMO

Recent genomic studies have identified chromosomal rearrangements defining new subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL), however many cases lack a known initiating genetic alteration. Using integrated genomic analysis of 1,988 childhood and adult cases, we describe a revised taxonomy of B-ALL incorporating 23 subtypes defined by chromosomal rearrangements, sequence mutations or heterogeneous genomic alterations, many of which show marked variation in prevalence according to age. Two subtypes have frequent alterations of the B lymphoid transcription-factor gene PAX5. One, PAX5alt (7.4%), has diverse PAX5 alterations (rearrangements, intragenic amplifications or mutations); a second subtype is defined by PAX5 p.Pro80Arg and biallelic PAX5 alterations. We show that p.Pro80Arg impairs B lymphoid development and promotes the development of B-ALL with biallelic Pax5 alteration in vivo. These results demonstrate the utility of transcriptome sequencing to classify B-ALL and reinforce the central role of PAX5 as a checkpoint in B lymphoid maturation and leukemogenesis.


Assuntos
Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Doença Aguda , Adolescente , Adulto , Idoso , Animais , Criança , Pré-Escolar , Cromossomos/genética , Feminino , Rearranjo Gênico/genética , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutação/genética , Transcriptoma/genética , Adulto Jovem
6.
Acta Haematol ; 136(4): 210-218, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27632567

RESUMO

Telomeres are the capping ends of chromosomes that protect the loss of genetic material and prevent chromosomal instability. In human tissue-specific stem/progenitor cells, telomere length (TL) is maintained by the telomerase complex, which consists of a reverse transcriptase catalytic subunit (TERT) and an RNA template (TERC). Very short telomeres and loss-of-function mutations in the TERT and TERC genes have been reported in acute myeloid leukemia, but the role of telomeres in acute promyelocytic leukemia (APL) has not been well established. We report the results for a large cohort of 187 PML/RARα-positive APL patients. No germline mutations in the TERT or TERC genes were identified. Codon 279 and 1062 TERT polymorphisms were present at a frequency similar to that in the general population. TL measured in blood or marrow mononuclear cells at diagnosis was significantly shorter in the APL patients than in healthy volunteers, and shorter telomeres at diagnosis were significantly associated with high-risk disease. For patients who achieved complete remission, the median increase in TL from diagnosis to remission (delta TL) was 2.0 kilobase (kb), and we found delta TL to be the most powerful predictor of overall survival when compared with well-established risk factors for poor outcomes in APL.


Assuntos
Códon , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/mortalidade , Polimorfismo Genético , Telomerase/genética , Homeostase do Telômero/genética , Adolescente , Adulto , Idoso , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , RNA/genética , Taxa de Sobrevida , Homeostase do Telômero/efeitos dos fármacos
7.
Cancer Cell ; 29(2): 186-200, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26859458

RESUMO

Chromosomal rearrangements are a hallmark of acute lymphoblastic leukemia (ALL) and are important ALL initiating events. We describe four different rearrangements of the erythropoietin receptor gene EPOR in Philadelphia chromosome-like (Ph-like) ALL. All of these rearrangements result in truncation of the cytoplasmic tail of EPOR at residues similar to those mutated in primary familial congenital polycythemia, with preservation of the proximal tyrosine essential for receptor activation and loss of distal regulatory residues. This resulted in deregulated EPOR expression, hypersensitivity to erythropoietin stimulation, and heightened JAK-STAT activation. Expression of truncated EPOR in mouse B cell progenitors induced ALL in vivo. Human leukemic cells with EPOR rearrangements were sensitive to JAK-STAT inhibition, suggesting a therapeutic option in high-risk ALL.


Assuntos
Ordem dos Genes , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores da Eritropoetina/genética , Sequência de Aminoácidos , Antineoplásicos/uso terapêutico , Sequência de Bases , Humanos , Dados de Sequência Molecular , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
8.
Blood ; 127(12): 1551-8, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26755712

RESUMO

The initial report of the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network Cancer Research Group trial E1900 (#NCT00049517) showed that induction therapy with high-dose (HD) daunorubicin (90 mg/m(2)) improved overall survival in adults <60 years old with acute myeloid leukemia (AML); however, at initial analysis, the benefit was restricted to younger patients (<50 years) and patients without unfavorable cytogenetics or aFLT3-ITD mutation. Here, we update the results of E1900 after longer follow-up (median, 80.1 months among survivors), focusing on the benefit of HD daunorubicin on common genetic subgroups. Compared with standard-dose daunorubicin (45 mg/m(2)), HD daunorubicin is associated with a hazard ratio (HR) for death of 0.74 (P= .001). Younger patients (<50 years) benefited from HD daunorubicin (HR, 0.66;P= .002), as did patients with favorable and intermediate cytogenetics (HR, 0.51;P= .03 and HR, 0.68;P= .01, respectively). Patients with unfavorable cytogenetics were shown to benefit from HD daunorubicin on multivariable analysis (adjusted HR, 0.66;P= .04). Patients with FLT3-ITD (24%),DNMT3A(24%), and NPM1(26%) mutant AML all benefited from HD daunorubicin (HR, 0.61,P= .009; HR, 0.62,P= .02; and HR, 0.50,P= .002; respectively). HD benefit was seen in the subgroup of older patients (50-60 years) with the FLT3-ITD or NPM1 mutation. Additionally, the presence of an NPM1 mutation confers a favorable prognosis only for patients receiving anthracycline dose intensification during induction.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , DNA (Citosina-5-)-Metiltransferases/genética , Daunorrubicina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Nucleares/genética , Tirosina Quinase 3 Semelhante a fms/genética , Adolescente , Adulto , Antibióticos Antineoplásicos/administração & dosagem , Citogenética , DNA Metiltransferase 3A , Daunorrubicina/administração & dosagem , Feminino , Humanos , Quimioterapia de Indução/métodos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Mutação , Nucleofosmina , Prognóstico , Análise de Sobrevida , Adulto Jovem
9.
Blood Adv ; 1(3): 250-259, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29046900

RESUMO

This multicenter trial was conducted to determine whether the addition of dasatinib to chemotherapy followed by an allogeneic hematopoietic cell transplant (HCT) in patients with Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) was feasible. Patients ≥ 18 and ≤ 60 years of age with newly diagnosed Ph+ ALL received up to 8 cycles of alternating hyperCVAD and high dose cytarabine and methotrexate with dasatinib. Patients with an available matched sibling or unrelated donor underwent an allogeneic HCT in first complete remission (CR1) followed by daily dasatinib starting from day 100. Others received maintenance therapy with vincristine and prednisone for 2 years and dasatinib indefinitely. 97 patients (94 evaluable) with median age of 44 years (range, 20 - 60) and median WBC at presentation of 10 × 109/L (range, 1 - 410 × 109/L) were accrued. 83 (88%) patients achieved CR or CR with incomplete count recovery (CRi) and 41 underwent ASCT in CR1. Median follow-up is 36 months (range, 9 - 63). For the overall population, overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS) at 3 years were 69%, 55%, and 62%, respectively. The 12-month RFS and OS after transplant were 71% and 87%, respectively. Landmark analysis at 175 days from the time of CR/CRi (longest time to HCT), showed statistically superior advantages for RFS and OS (p=0.038 and 0.037, respectively) for the transplanted patients. Addition of dasatinib to chemotherapy and HCT for younger patients with Ph+ ALL is feasible and warrants further testing.

10.
Cancer Cell ; 24(6): 766-76, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24291004

RESUMO

Glucocorticoid resistance is a major driver of therapeutic failure in T cell acute lymphoblastic leukemia (T-ALL). Here, we identify the AKT1 kinase as a major negative regulator of the NR3C1 glucocorticoid receptor protein activity driving glucocorticoid resistance in T-ALL. Mechanistically, AKT1 impairs glucocorticoid-induced gene expression by direct phosphorylation of NR3C1 at position S134 and blocking glucocorticoid-induced NR3C1 translocation to the nucleus. Moreover, we demonstrate that loss of PTEN and consequent AKT1 activation can effectively block glucocorticoid-induced apoptosis and induce resistance to glucocorticoid therapy. Conversely, pharmacologic inhibition of AKT with MK2206 effectively restores glucocorticoid-induced NR3C1 translocation to the nucleus, increases the response of T-ALL cells to glucocorticoid therapy, and effectively reverses glucocorticoid resistance in vitro and in vivo.


Assuntos
Dexametasona/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transporte Ativo do Núcleo Celular , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , PTEN Fosfo-Hidrolase/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores de Glucocorticoides/metabolismo
11.
Blood ; 122(14): 2425-32, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23908464

RESUMO

The SH2B adaptor protein 3 (SH2B3) gene encodes a negative regulator of cytokine signaling with a critical role in the homeostasis of hematopoietic stem cells and lymphoid progenitors. Here, we report the identification of germline homozygous SH2B3 mutations in 2 siblings affected with developmental delay and autoimmunity, one in whom B-precursor acute lymphoblastic leukemia (ALL) developed. Mechanistically, loss of SH2B3 increases Janus kinase-signal transducer and activator of transcription signaling, promotes lymphoid cell proliferation, and accelerates leukemia development in a mouse model of NOTCH1-induced ALL. Moreover, extended mutation analysis showed homozygous somatic mutations in SH2B3 in 2 of 167 ALLs analyzed. Overall, these results demonstrate a Knudson tumor suppressor role for SH2B3 in the pathogenesis of ALL and highlight a possible link between genetic predisposition factors in the pathogenesis of autoimmunity and leukemogenesis.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Doenças Autoimunes/genética , Sequência de Bases , Western Blotting , Criança , Pré-Escolar , Análise Mutacional de DNA , Deficiências do Desenvolvimento/genética , Feminino , Genótipo , Mutação em Linhagem Germinativa , Humanos , Lactente , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Irmãos
12.
Nat Med ; 19(3): 368-71, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23377281

RESUMO

Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.


Assuntos
5'-Nucleotidase/genética , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Mercaptopurina/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , 5'-Nucleotidase/metabolismo , Arabinonucleosídeos/farmacologia , Arabinonucleosídeos/uso terapêutico , Sequência de Bases , Linhagem Celular , Células HEK293 , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Recidiva , Análise de Sequência de DNA , Tioguanina/uso terapêutico
13.
Haematologica ; 98(6): 945-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23349309

RESUMO

The biology and outcome of adult t(4;11)(q21;q23)/MLL-AFF1 acute lymphoblastic leukemia are poorly understood. We describe the outcome and delineate prognostic factors and optimal post-remission therapy in 85 consecutive patients (median age 38 years) treated uniformly in the prospective trial UKALLXII/ECOG2993. The immunophenotype of this leukemia was pro-B (CD10(NEG)). Immaturity was further suggested by high expression of the stem-cell antigens, CD133 and CD135, although CD34 expression was significantly lower than in t(4;11)-negative patients. Complete remission was achieved in 77 (93%) patients but only 35% survived 5 years (95% CI: 25-45%); the relapse rate was 45% (95% CI: 33-58%). Thirty-one patients underwent allogeneic transplantation in first remission (15 sibling donors and 16 unrelated donors): with 5-year survival rates of 56% and 67% respectively, only 2/31 patients relapsed. This compares with a 24% survival rate and 59% relapse rate in 46 patients who received post-remission chemotherapy. A major determinant of outcome was age with 71% of patients aged <25 years surviving. Younger patients had lower relapse rates (19%) but most received allografts in first complete remission. In conclusion, multivariate analysis did not demonstrate an advantage of allografting over chemotherapy but only five younger patients received chemotherapy. Prospective trials are required to determine whether poor outcomes in older patients can be improved by reduced-intensity conditioning allografts. NCT00002514 www.clinicaltrials.gov.


Assuntos
Cromossomos Humanos Par 11 , Cromossomos Humanos Par 4 , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Translocação Genética , Adolescente , Adulto , Fatores Etários , Causas de Morte , Feminino , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Prognóstico , Estudos Prospectivos , Recidiva , Indução de Remissão , Resultado do Tratamento , Adulto Jovem
14.
Cancer Discov ; 2(11): 1004-23, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23107779

RESUMO

UNLABELLED: Genetic lesions such as BCR-ABL1, E2A-PBX1, and MLL rearrangements (MLLr) are associated with unfavorable outcomes in adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Leukemia oncoproteins may directly or indirectly disrupt cytosine methylation patterning to mediate the malignant phenotype. We postulated that DNA methylation signatures in these aggressive B-ALLs would point toward disease mechanisms and useful biomarkers and therapeutic targets. We therefore conducted DNA methylation and gene expression profiling on a cohort of 215 adult patients with B-ALL enrolled in a single phase III clinical trial (ECOG E2993) and normal control B cells. In BCR-ABL1-positive B-ALLs, aberrant cytosine methylation patterning centered around a cytokine network defined by hypomethylation and overexpression of IL2RA(CD25). The E2993 trial clinical data showed that CD25 expression was strongly associated with a poor outcome in patients with ALL regardless of BCR-ABL1 status, suggesting CD25 as a novel prognostic biomarker for risk stratification in B-ALLs. In E2A-PBX1-positive B-ALLs, aberrant DNA methylation patterning was strongly associated with direct fusion protein binding as shown by the E2A-PBX1 chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq), suggesting that E2A-PBX1 fusion protein directly remodels the epigenome to impose an aggressive B-ALL phenotype. MLLr B-ALL featured prominent cytosine hypomethylation, which was linked with MLL fusion protein binding, H3K79 dimethylation, and transcriptional upregulation, affecting a set of known and newly identified MLL fusion direct targets with oncogenic activity such as FLT3 and BCL6. Notably, BCL6 blockade or loss of function suppressed proliferation and survival of MLLr leukemia cells, suggesting BCL6-targeted therapy as a new therapeutic strategy for MLLr B-ALLs. SIGNIFICANCE: We conducted the first integrative epigenomic study in adult B-ALLs, as a correlative study to the ECOG E2993 phase III clinical trial. This study links for the first time the direct actions of oncogenic fusion proteins with disruption of epigenetic regulation mediated by cytosine methylation. We identify a novel clinically actionable biomarker in B-ALLs: IL2RA (CD25), which is linked with BCR-ABL1 and an inflammatory signaling network associated with chemotherapy resistance. We show that BCL6 is a novel MLL fusion protein target that is required to maintain the proliferation and survival of primary human adult MLLr cells and provide the basis for a clinical trial with BCL6 inhibitors for patients with MLLr.


Assuntos
Biomarcadores Tumorais/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Complexo CD3/biossíntese , Metilação de DNA , Proteínas de Ligação a DNA/genética , Epigenômica , Proteínas de Fusão bcr-abl/genética , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-6
15.
Blood ; 120(11): 2297-306, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22855599

RESUMO

We determined the prognostic relevance of CD25 (IL-2 receptor-α) expression in 657 patients (≤ 60 years) with de novo acute myeloid leukemia (AML) treated in the Eastern Cooperative Oncology Group trial, E1900. We identified CD25(POS) myeloblasts in 87 patients (13%), of whom 92% had intermediate-risk cytogenetics. CD25 expression correlated with expression of stem cell antigen CD123. In multivariate analysis, controlled for prognostic baseline characteristics and daunorubicin dose, CD25(POS) patients had inferior complete remission rates (P = .0005) and overall survival (P < .0001) compared with CD25(NEG) cases. In a subset of 396 patients, we integrated CD25 expression with somatic mutation status to determine whether CD25 impacted outcome independent of prognostic mutations. CD25 was positively correlated with internal tandem duplications in FLT3 (FLT3-ITD), DNMT3A, and NPM1 mutations. The adverse prognostic impact of FLT3-ITD(POS) AML was restricted to CD25(POS) patients. CD25 expression improved AML prognostication independent of integrated, cytogenetic and mutational data, such that it reallocated 11% of patients with intermediate-risk disease to the unfavorable-risk group. Gene expression analysis revealed that CD25(POS) status correlated with the expression of previously reported leukemia stem cell signatures. We conclude that CD25(POS) status provides prognostic relevance in AML independent of known biomarkers and is correlated with stem cell gene-expression signatures associated with adverse outcome in AML.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Daunorrubicina/uso terapêutico , Células Precursoras de Granulócitos/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Proteínas de Neoplasias/metabolismo , Adolescente , Adulto , Antibióticos Antineoplásicos/administração & dosagem , Estudos de Coortes , Daunorrubicina/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Seguimentos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células Precursoras de Granulócitos/efeitos dos fármacos , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-3/genética , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Nucleofosmina , Prognóstico , Análise de Sobrevida , Adulto Jovem
16.
Blood ; 120(10): 2098-108, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22734072

RESUMO

Mutations in the all-trans retinoic acid (ATRA)-targeted ligand binding domain of PML-RARα (PRα/LBD+) have been implicated in the passive selection of ATRA-resistant acute promyelocytic leukemia clones leading to disease relapse. Among 45 relapse patients from the ATRA/chemotherapy arm of intergroup protocol C9710, 18 patients harbored PRα/LBD+ (40%), 7 of whom (39%) relapsed Off-ATRA selection pressure, suggesting a possible active role of PRα/LBD+. Of 41 relapse patients coanalyzed, 15 (37%) had FMS-related tyrosine kinase 3 internal tandem duplication mutations (FLT3-ITD+), which were differentially associated with PRα/LBD+ depending on ATRA treatment status at relapse: positively, On-ATRA; negatively, Off-ATRA. Thirteen of 21 patients (62%) had additional chromosome abnormalities (ACAs); all coanalyzed PRα/LBD mutant patients who relapsed off-ATRA (n = 5) had associated ACA. After relapse Off-ATRA, ACA and FLT3-ITD+ were negatively associated and were oppositely associated with presenting white blood count and PML-RARα type: ACA, low, L-isoform; FLT3-ITD+, high, S-isoform. These exploratory results suggest that differing PRα/LBD+ activities may interact with FLT3-ITD+ or ACA, that FLT3-ITD+ and ACA are associated with different intrinsic disease progression pathways manifest at relapse Off-ATRA, and that these different pathways may be short-circuited by ATRA-selectable defects at relapse On-ATRA. ACA and certain PRα/LBD+ were also associated with reduced postrelapse survival.


Assuntos
Antineoplásicos/administração & dosagem , Aberrações Cromossômicas , Leucemia Promielocítica Aguda/genética , Proteínas de Fusão Oncogênica/genética , Tretinoína/administração & dosagem , Tirosina Quinase 3 Semelhante a fms/genética , Adolescente , Adulto , Idoso , Antineoplásicos/efeitos adversos , Criança , Pré-Escolar , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Humanos , Lactente , Cariotipagem , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/mortalidade , Pessoa de Meia-Idade , Mutação , Recidiva , Análise de Sobrevida , Tretinoína/efeitos adversos
17.
Mol Cancer Ther ; 11(7): 1565-75, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22504949

RESUMO

T-cell acute lymphoblastic leukemias (T-ALL) and lymphomas are aggressive hematologic cancers frequently associated with activating mutations in NOTCH1. Early studies identified NOTCH1 as an attractive therapeutic target for the treatment of T-ALL through the use of γ-secretase inhibitors (GSI). Here, we characterized the interaction between PF-03084014, a clinically relevant GSI, and dexamethasone in preclinical models of glucocorticoid-resistant T-ALL. Combination treatment of the GSI PF-03084014 with glucocorticoids induced a synergistic antileukemic effect in human T-ALL cell lines and primary human T-ALL patient samples. Mechanistically PF-03084014 plus glucocorticoid treatment induced increased transcriptional upregulation of the glucocorticoid receptor and glucocorticoid target genes. Treatment with PF-03084014 and glucocorticoids in combination was highly efficacious in vivo, with enhanced reduction of tumor burden in a xenograft model of T-ALL. Finally, glucocorticoid treatment effectively reversed PF-03084014-induced gastrointestinal toxicity via inhibition of goblet cell metaplasia. These results warrant the analysis of PF-03084014 and glucocorticoids in combination for the treatment of glucocorticoid-resistant T-ALL.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Antineoplásicos/farmacologia , Glucocorticoides/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Tetra-Hidronaftalenos/farmacologia , Valina/análogos & derivados , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Análise por Conglomerados , Dexametasona/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/metabolismo , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/toxicidade , Valina/química , Valina/farmacologia , Valina/toxicidade
18.
Blood ; 119(22): 5211-4, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22510873

RESUMO

Oncogenic activating mutations in NOTCH1 occur in more than 50% of T-cell acute lymphoblastic leukemias (T-ALLs). In the present study, we describe a novel mechanism of NOTCH1 activation in T-ALL in which a deletion removing the 5' portion of NOTCH1 abolishes the negative regulatory control of the extracellular domain and leads to constitutively active NOTCH1 signaling. Polypeptides translated from truncated transcripts encoded by the NOTCH1 deletion allele retain the transmembrane domain of the receptor and are constitutively cleaved by the γ-secretase complex, resulting in high levels of NOTCH1 signaling that can be effectively blocked by γ-secretase inhibitors. Our results expand the spectrum of oncogenic lesions activating NOTCH1 signaling in human T-ALL.


Assuntos
Alelos , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética , Transdução de Sinais/genética , Adulto , Feminino , Humanos , Masculino , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Estrutura Terciária de Proteína , Receptor Notch1/metabolismo , Deleção de Sequência
19.
N Engl J Med ; 366(12): 1079-89, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22417203

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease with respect to presentation and clinical outcome. The prognostic value of recently identified somatic mutations has not been systematically evaluated in a phase 3 trial of treatment for AML. METHODS: We performed a mutational analysis of 18 genes in 398 patients younger than 60 years of age who had AML and who were randomly assigned to receive induction therapy with high-dose or standard-dose daunorubicin. We validated our prognostic findings in an independent set of 104 patients. RESULTS: We identified at least one somatic alteration in 97.3% of the patients. We found that internal tandem duplication in FLT3 (FLT3-ITD), partial tandem duplication in MLL (MLL-PTD), and mutations in ASXL1 and PHF6 were associated with reduced overall survival (P=0.001 for FLT3-ITD, P=0.009 for MLL-PTD, P=0.05 for ASXL1, and P=0.006 for PHF6); CEBPA and IDH2 mutations were associated with improved overall survival (P=0.05 for CEBPA and P=0.01 for IDH2). The favorable effect of NPM1 mutations was restricted to patients with co-occurring NPM1 and IDH1 or IDH2 mutations. We identified genetic predictors of outcome that improved risk stratification among patients with AML, independently of age, white-cell count, induction dose, and post-remission therapy, and validated the significance of these predictors in an independent cohort. High-dose daunorubicin, as compared with standard-dose daunorubicin, improved the rate of survival among patients with DNMT3A or NPM1 mutations or MLL translocations (P=0.001) but not among patients with wild-type DNMT3A, NPM1, and MLL (P=0.67). CONCLUSIONS: We found that DNMT3A and NPM1 mutations and MLL translocations predicted an improved outcome with high-dose induction chemotherapy in patients with AML. These findings suggest that mutational profiling could potentially be used for risk stratification and to inform prognostic and therapeutic decisions regarding patients with AML. (Funded by the National Cancer Institute and others.).


Assuntos
Análise Mutacional de DNA , Quimioterapia de Indução , Leucemia Mieloide Aguda/genética , Mutação , Medição de Risco/métodos , Adolescente , Adulto , Antibióticos Antineoplásicos/administração & dosagem , Impressões Digitais de DNA , Daunorrubicina/administração & dosagem , Duplicação Gênica , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Pessoa de Meia-Idade , Nucleofosmina , Prognóstico , Translocação Genética , Adulto Jovem
20.
Nat Med ; 18(3): 436-40, 2012 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-22366949

RESUMO

The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Redes Reguladoras de Genes/genética , Proteínas de Homeodomínio/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Proteínas de Homeodomínio/genética , Humanos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oncogenes/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Conformação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA