Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Biol Chem ; 113: 108243, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39461161

RESUMO

Liver cancer is a leading cause of cancer-related deaths, often diagnosed at advanced stages due to reliance on traditional imaging methods. Existing computer-aided diagnosis systems struggle with noise, anatomical complexity, and ineffective feature integration, leading to inaccuracies in lesion segmentation and classification. By effectively addressing these challenges, the model aims to enhance early detection and assist clinicians in making informed decisions. Ultimately, this research seeks to contribute to more efficient and accurate liver cancer diagnosis. This paper presents a novel model for liver cancer classification, called SegNet-based Liver Cancer Classification via SqueezeNet (SgN-LCC-SqN). The model effectively executes liver cancer segmentation and classification through four key steps: preprocessing, segmentation, feature extraction, and classification. During preprocessing, Quadratic Mean Estimated Wiener Filtering (QMEWF) is utilized to minimize image noise. Segmentation divides the image into segments using Enhanced Feature Pyramid SegNet (EFP-SgN), which is essential for precise diagnosis. Feature extraction encompasses color features, Local Directional Pattern Variance, and Correlation Filtering-Local Gradient Increasing Pattern (CF-LGIP) features. The extracted features are then processed through an ensemble model, Deep Convolutional, Recurrent, Long Short Term Memory with SqueezeNet (DCR-LSTM-SqN), which includes Deep Convolutional Neural Network (DCNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Modified Loss Function in SqueezeNet (MLF-SqN) classifiers, sequentially analyzing the feature sets through DCNN, RNN, and LSTM before classification by MLF-SqN. The performance of the suggested DCR-LSTM-SqN model is evaluated over conventional methods for positive, negative and other metrics. The DCR-LSTM-SqN model consistently demonstrates superior accuracy, ranging from 0.947 to 0.984, across all training data percentages. Thus, the proposed model effectively segments liver lesions and classifies cancerous areas, demonstrating its potential as a valuable resource for clinicians to enhance the efficiency and accuracy of liver cancer diagnosis.

2.
Comput Biol Chem ; 113: 108200, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39265462

RESUMO

Autism Spectrum Disorder (ASD) is a neurological illness that degrades communication and interaction among others. Autism can be detected at any stage. Early detection of ASD is important in preventing the communication, interaction and behavioral outcomes of individuals. Hence, this research introduced the Fractional Whale-driving Driving Training-based Based Optimization with Convolutional Neural Network-based Transfer learning (FWDTBO-CNN_TL) for identifying ASD. Here, the FWDTBO is modelled by the incorporation of Fractional calculus (FC), Whale optimization algorithm (WOA) and Driving Training-based Optimization (DTBO) that trains the hyperparameters of CNN-TL. Moreover, the Convolutional Neural Networks (CNN) utilize the hyperparameters from trained models, like Alex Net and Shuffle Net in such a way that the CNN-TL is designed. To improve the detection efficiency, the nub region was extracted and carried out with the functional connectivity-based Whale Driving Training Optimization (WDTBO) algorithm. Moreover, the TL is tuned by the FWDTBO algorithm. The result reveals that the ASD detection technique, FWDTBO-CNN-TL acquired 90.7 % accuracy, 95.4 % sensitivity, 93.7 % specificity and 93 % f-measure with the ABIDE-II dataset.

3.
Sci Rep ; 14(1): 18039, 2024 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098877

RESUMO

Coronavirus has long been considered a global epidemic. It caused the deaths of nearly 7.01 million individuals and caused an economic downturn. The number of verified coronavirus cases is increasing daily, putting the whole human race at danger and putting strain on medical experts to eradicate the disease as rapidly as possible. As a consequence, it is vital to predict the upcoming coronavirus positive patients in order to plan actions in the future. Furthermore, it has been discovered all across the globe that asymptomatic coronavirus patients play a significant part in the disease's transmission. This prompted us to incorporate similar examples in order to accurately forecast trends. A typical strategy for analysing the rate of pandemic infection is to use time-series forecasting technique. This would assist us in developing better decision support systems. To anticipate COVID-19 active cases for a few countries, we recommended a hybrid model utilizing a fuzzy time series (FTS) model mixed with a non-linear growth model. The coronavirus positive case outbreak has been evaluated for Italy, Brazil, India, Germany, Pakistan, and Myanmar through June 5, 2020 in phase-1, and January 15, 2022 in phase-2, and forecasts active cases for the next 26 and 14 days respectively. The proposed framework fitting effect outperforms individual logistic growth and the fuzzy time series techniques, with R-scores of 0.9992 in phase-1 and 0.9784 in phase-2. The proposed model provided in this article may be utilised to comprehend a country's epidemic pattern and assist the government in developing better effective interventions.


Assuntos
COVID-19 , Previsões , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Previsões/métodos , SARS-CoV-2/isolamento & purificação , Lógica Fuzzy , Modelos Logísticos , Pandemias
4.
Cancer Invest ; 42(8): 710-725, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39189645

RESUMO

This work proposed a liver cancer classification scheme that includes Preprocessing, Feature extraction, and classification stages. The source images are pre-processed using Gaussian filtering. For segmentation, this work proposes a LUV transformation-based adaptive thresholding-based segmentation process. After the segmentation, certain features are extracted that include multi-texon based features, Improved Local Ternary Pattern (LTP-based features), and GLCM features during this phase. In the Classification phase, an improved Deep Maxout model is proposed for liver cancer detection. The adopted scheme is evaluated over other schemes based on various metrics. While the learning rate is 60%, an improved deep maxout model achieved a higher F-measure value (0.94) for classifying liver cancer; however, the previous method like Support Vector Machine (SVM), Random Forest (RF), Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), K-Nearest Neighbor (KNN), Deep maxout, Convolutional Neural Network (CNN), and DL model holds less F-measure value. An improved deep maxout model achieved minimal False Positive Rate (FPR), and False Negative Rate (FNR) values with the best outcomes compared to other existing models for liver cancer classification.


Assuntos
Neoplasias Hepáticas , Redes Neurais de Computação , Máquina de Vetores de Suporte , Humanos , Neoplasias Hepáticas/diagnóstico , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA