Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae033, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38774131

RESUMO

Iron fortification to prevent anemia in African infants increases colonic iron levels, favoring the growth of enteropathogens. The use of prebiotics may be an effective strategy to reduce these detrimental effects. Using the African infant PolyFermS gut model, we compared the effect of the prebiotics short-chain galacto- with long-chain fructo-oligosaccharides (scGOS/lcFOS) and native inulin, and the emerging prebiotic acacia gum, a branched-polysaccharide-protein complex consisting of arabinose and galactose, during iron supplementation on four Kenyan infant gut microbiota. Iron supplementation did not alter the microbiota but promoted Clostridioides difficile in one microbiota. The prebiotic effect of scGOS/lcFOS and inulin was confirmed during iron supplementation in all investigated Kenyan infant gut microbiota, leading to higher abundance of bifidobacteria, increased production of acetate, propionate, and butyrate, and a significant shift in microbiota composition compared to non-supplemented microbiota. The abundance of the pathogens Clostridium difficile and Clostridium perfringens was also inhibited upon addition of the prebiotic fibers. Acacia gum had no effect on any of the microbiota. In conclusion, scGOS/lcFOS and inulin, but not acacia gum, showed a donor-independent strong prebiotic potential in Kenyan infant gut microbiota. This study demonstrates the relevance of comparing fibers in vitro prior to clinical studies.

2.
Sci Rep ; 13(1): 20563, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996456

RESUMO

Appropriate in vitro models to investigate the impact of novel nutritional strategies on the gut microbiota of infants living in rural Africa are scarce. Here, we aimed to develop such a continuous gut fermentation model based on the PolyFermS platform, which allows controlled and stable long-term cultivation of colon microbiota in conditions akin the host. Nine immobilized Kenyan infant fecal microbiota were used as inoculum for continuous PolyFermS colon models fed with medium mimicking the weaning infant diet. Fructo-oligosaccharides (FOS) supplementation (1, 4 and 8 g/L) and cultivation pH (5.8 and 6.3) were investigated stepwise. Conditions providing a close match between fecal and in vitro microbiota (pH 5.8 with 1 g/L FOS) were selected for investigating long-term stability of four Kenyan infant PolyFermS microbiota. The shared fraction of top bacterial genera between fecal and in vitro microbiota was high (74-89%) and stable during 107 days of continuous cultivation. Community diversity was maintained and two distinct fermentation metabolite profiles of infant fecal microbiota were observed. Three propiogenic and one butyrogenic metabolite profile of infant fecal microbiota established from day 8 onwards and stayed stable. We present here the first rationally designed continuous cultivation model of African infant gut microbiota. This model will be important to assess the effect of dietary or environmental factors on the gut microbiota of African infants with high enteropathogen exposure.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Lactente , Quênia , Fezes/microbiologia , Colo/microbiologia , Oligossacarídeos/farmacologia
3.
BMC Microbiol ; 23(1): 174, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403024

RESUMO

BACKGROUND: The combination of cultivation studies with molecular analysis approaches allows characterization of the complex human gut microbiota in depth. In vitro cultivation studies of infants living in rural sub-Saharan Africa are scarce. In this study, a batch cultivation protocol for Kenyan infant fecal microbiota was validated. METHODS: Fresh fecal samples were collected from 10 infants living in a rural area of Kenya. Samples were transported under protective conditions and subsequently prepared for inoculation within less than 30 h for batch cultivation. A diet-adapted cultivation medium was used that mimicked the daily intake of human milk and maize porridge in Kenyan infants during weaning. 16 S rRNA gene amplicon sequencing and HPLC analyses were performed to assess the composition and metabolic activity, respectively, of the fecal microbiota after 24 h of batch cultivation. RESULTS: High abundance of Bifidobacterium (53.4 ± 11.1%) and high proportions of acetate (56 ± 11% of total metabolites) and lactate (24 ± 22% of total metabolites) were detected in the Kenyan infant fecal microbiota. After cultivation started at an initial pH 7.6, the fraction of top bacterial genera (≥ 1% abundant) shared between fermentation and fecal samples was high at 97 ± 5%. However, Escherichia-Shigella, Clostridium sensu stricto 1, Bacteroides and Enterococcus were enriched concomitant with decreased Bifidobacterium abundance. Decreasing the initial pH to 6.9 lead to higher abundance of Bifidobacterium after incubation and increased the compositional similarity of fermentation and fecal samples. Despite similar total metabolite production of all fecal microbiota after cultivation, inter-individual differences in metabolite profiles were apparent. CONCLUSIONS: Protected transport and batch cultivation in host and diet adapted conditions allowed regrowth of the top abundant genera and reproduction of the metabolic activity of fresh Kenyan infant fecal microbiota. The validated batch cultivation protocol can be used to study the composition and functional potential of Kenyan infant fecal microbiota in vitro.


Assuntos
Microbiota , Humanos , Lactente , Quênia , Leite Humano , Bactérias/genética , Fezes/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise
4.
Res Sq ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461546

RESUMO

Appropriate in vitro models to investigate the impact of novel nutritional strategies on the gut microbiota of infants living in rural Africa are scarce. Here, we aimed to develop such a continuous gut fermentation model based on the PolyFermS platform. Eight immobilized Kenyan infant fecal microbiota were used as inoculum for continuous PolyFermS colon models fed with medium mimicking the weaning infant diet. Fructo-oligosaccharides (FOS) supplementation (1, 4 and 8 g/L) and cultivation pH (5.8 and 6.3) were stepwise investigated. Conditions providing a close match between fecal and in vitro microbiota (pH 5.8 with 1 g/L FOS) were selected for investigating long-term stability of four Kenyan infant PolyFermS microbiota. The shared fraction of top bacterial genera between fecal and in vitro microbiota was high (74-89%) and stable during 107 days of continuous cultivation. Community diversity was maintained, and two distinct fermentation metabolite profiles, propiogenic and butyrogenic, of infant fecal microbiota established from day 8 onwards and stayed stable. We present here the first rationally designed and accurate continuous cultivation model of African infant gut microbiota. This model will be important to assess the effect of dietary or environmental factors on the gut microbiota of African infants with high enteropathogen exposure.

5.
Nat Commun ; 10(1): 1149, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850614

RESUMO

Treatment failure in biofilm-associated bacterial infections is an important healthcare issue. In vitro studies and mouse models suggest that bacteria enter a slow-growing/non-growing state that results in transient tolerance to antibiotics in the absence of a specific resistance mechanism. However, little clinical confirmation of antibiotic tolerant bacteria in patients exists. In this study we investigate a Staphylococcus epidermidis pacemaker-associated endocarditis, in a patient who developed a break-through bacteremia despite taking antibiotics to which the S. epidermidis isolate is fully susceptible in vitro. Characterization of the clinical S. epidermidis isolates reveals in-host evolution over the 16-week infection period, resulting in increased antibiotic tolerance of the entire population due to a prolonged lag time until growth resumption and a reduced growth rate. Furthermore, we observe adaptation towards an increased biofilm formation capacity and genetic diversification of the S. epidermidis isolates within the patient.


Assuntos
Antibacterianos/farmacologia , Bacteriemia/microbiologia , Resistência a Múltiplos Medicamentos/genética , Endocardite/microbiologia , Interações Hospedeiro-Patógeno/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/genética , Adulto , Bacteriemia/tratamento farmacológico , Bacteriemia/patologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Tolerância a Medicamentos/genética , Endocardite/tratamento farmacológico , Endocardite/patologia , Evolução Molecular , Fluoroquinolonas/farmacologia , Glicopeptídeos/farmacologia , Humanos , Mutação INDEL , Masculino , Testes de Sensibilidade Microbiana , Marca-Passo Artificial/microbiologia , Peptídeos Cíclicos/farmacologia , Filogenia , Polimorfismo de Nucleotídeo Único , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/isolamento & purificação , beta-Lactamas/farmacologia
6.
Int J Antimicrob Agents ; 50(6): 726-729, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28797807

RESUMO

Recipients of allogeneic haematopoietic stem cell transplantation (allo-HSCT) are severely immunocompromised and are at increased risk of infection. In this prospective, observational, single-centre study including 110 allo-HSCT recipients, the rate of Staphylococcus aureus colonisation was reduced from 11.8% to 0% (P <0.001) following peritransplant oral gut decontamination. No invasive S. aureus infections were observed.


Assuntos
Descontaminação/métodos , Trato Gastrointestinal/microbiologia , Transplante de Células-Tronco Hematopoéticas , Boca/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Hospedeiro Imunocomprometido , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Transplante Homólogo , Resultado do Tratamento , Adulto Jovem
7.
Int J Med Microbiol ; 307(1): 11-20, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27955998

RESUMO

There has been controversy about the intrinsic virulence of methicillin-resistant Staphylococcus aureus (MRSA) as compared to methicillin-susceptible S. aureus (MSSA). To address this discrepancy, the intrinsic virulence of 42 MRSA and 40 MSSA clinical isolates was assessed by testing endothelial cell (EC) damage, a surrogate marker for virulence in blood stream infections. Since these clinical isolates represent a heterogeneous group, well characterized S. aureus laboratory strains with SCCmec loss- and gain-of-function mutations were used in addition. The clinical MRSA isolates carrying typical hospital acquired SCCmec types (I, II or III) induced significantly less damage (47.8%) as compared to isolates with other SCCmec types (62.3%, p=0.03) and MSSA isolates (64.2%, p<0.01). There was a strong inverse correlation between high-level oxacillin resistance and low EC damage induction (R2=0.4464, p<0.001). High-level oxacillin resistant strains (MIC >32µ/ml) grew significantly slower as compared to isolates with low-level resistance (p=0.047). The level of EC damage positively correlated with α- and δ-toxin production (p<0.0001 and p<0.05, respectively) but not with ß-toxin production. Invasive MRSA isolates (n=21, 56.3%) were significantly less cytotoxic as compared to invasive MSSA isolates (n=20, 68.0%, p<0.05). There was no difference between EC damage induced by superficial versus invasive isolates in either MRSA or MSSA strains. Our data suggest that the intrinsic virulence of MRSA is similar or even reduced as compared to MSSA strains but is linked to the level of methicillin resistance.


Assuntos
Células Endoteliais/microbiologia , Células Endoteliais/fisiologia , Interações Hospedeiro-Patógeno , Resistência a Meticilina , Staphylococcus aureus/fisiologia , Antibacterianos/farmacologia , Toxinas Bacterianas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromossomos Bacterianos , Deleção de Genes , Ordem dos Genes , Humanos , Sequências Repetitivas Dispersas , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/isolamento & purificação , Virulência
8.
J Infect Dis ; 213(2): 305-13, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26188074

RESUMO

BACKGROUND: Staphylococcus aureus-infected patients treated with antibiotics that are effective in vitro often experience relapse of infection because the bacteria hide in privileged locations. These locations include abscesses and host cells, which contain low-pH compartments and are sites from which nonstable S. aureus small-colony variants (SCVs) are frequently recovered. METHODS: We assessed the effect of low pH on S. aureus colony phenotype and bacterial growth, using in vitro and in vivo models of long-term infection. RESULTS: We showed that low pH induced nonstable SCVs and nonreplicating persisters that are capable of regrowth. Within host cells, S. aureus was located in phagolysosomes, a low-pH compartment. Therapeutic neutralization of phagolysosomal pH with ammonium chloride, bafilomycin A1, or the antimalaria drug chloroquine reduced SCVs in infected host cells. In a systemic mouse infection model, treatment with chloroquine also reduced SCVs. CONCLUSIONS: Our results show that the acidic environment favors formation of nonstable SCVs, which reflect the SCVs found in clinics. They also provide evidence that treatment with alkalinizing agents, together with antibiotics, may provide a novel translational strategy for eradicating persisting intracellular reservoirs of staphylococci. This approach may also be extended to other intracellular bacteria.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Fagossomos/química , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Cloreto de Amônio/farmacologia , Animais , Linhagem Celular Tumoral , Cloroquina/farmacologia , Regulação Bacteriana da Expressão Gênica , Variação Genética , Humanos , Concentração de Íons de Hidrogênio , Macrolídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Staphylococcus aureus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA