Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338947

RESUMO

The extended cleavage specificities of two hematopoietic serine proteases originating from the ray-finned fish, the spotted gar (Lepisosteus oculatus), have been characterized using substrate phage display. The preference for particular amino acids at and surrounding the cleavage site was further validated using a panel of recombinant substrates. For one of the enzymes, the gar granzyme G, a strict preference for the aromatic amino acid Tyr was observed at the cleavable P1 position. Using a set of recombinant substrates showed that the gar granzyme G had a high selectivity for Tyr but a lower activity for cleaving after Phe but not after Trp. Instead, the second enzyme, gar DDN1, showed a high preference for Leu in the P1 position of substrates. This latter enzyme also showed a high preference for Pro in the P2 position and Arg in both P4 and P5 positions. The selectivity for the two Arg residues in positions P4 and P5 suggests a highly specific substrate selectivity of this enzyme. The screening of the gar proteome with the consensus sequences obtained by substrate phage display for these two proteases resulted in a very diverse set of potential targets. Due to this diversity, a clear candidate for a specific immune function of these two enzymes cannot yet be identified. Antisera developed against the recombinant gar enzymes were used to study their tissue distribution. Tissue sections from juvenile fish showed the expression of both proteases in cells in Peyer's patch-like structures in the intestinal region, indicating they may be expressed in T or NK cells. However, due to the lack of antibodies to specific surface markers in the gar, it has not been possible to specify the exact cellular origin. A marked difference in abundance was observed for the two proteases where gar DDN1 was expressed at higher levels than gar granzyme G. However, both appear to be expressed in the same or similar cells, having a lymphocyte-like appearance.


Assuntos
Peixes , Serina Proteases , Animais , Serina Proteases/genética , Granzimas , Endopeptidases , Sequência Consenso , Especificidade por Substrato
2.
Nat Genet ; 53(9): 1373-1384, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34462605

RESUMO

The bowfin (Amia calva) is a ray-finned fish that possesses a unique suite of ancestral and derived phenotypes, which are key to understanding vertebrate evolution. The phylogenetic position of bowfin as a representative of neopterygian fishes, its archetypical body plan and its unduplicated and slowly evolving genome make bowfin a central species for the genomic exploration of ray-finned fishes. Here we present a chromosome-level genome assembly for bowfin that enables gene-order analyses, settling long-debated neopterygian phylogenetic relationships. We examine chromatin accessibility and gene expression through bowfin development to investigate the evolution of immune, scale, respiratory and fin skeletal systems and identify hundreds of gene-regulatory loci conserved across vertebrates. These resources connect developmental evolution among bony fishes, further highlighting the bowfin's importance for illuminating vertebrate biology and diversity in the genomic era.


Assuntos
Evolução Biológica , Evolução Molecular , Genoma/genética , Rajidae/genética , Rajidae/fisiologia , Animais , Cromatina/genética , Peixes , Rajidae/imunologia , Sequenciamento Completo do Genoma
3.
Dev Dyn ; 250(11): 1668-1682, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33913218

RESUMO

BACKGROUND: The cellular and molecular mechanisms initiating vertebrate cranial dermal bone formation is a conundrum in evolutionary and developmental biology. Decades of studies have determined the developmental processes of cranial dermal bones in various vertebrates and identified possible inducers of dermal bone. However, evolutionarily derived characters of current experimental model organisms, such as non-homologous frontal bones between teleosts and sarcopterygians, hinder investigations of ancestral and conserved mechanisms of vertebrate cranial dermal bone induction. Thus, investigating such mechanisms with animals diverging at evolutionarily informative phylogenetic nodes is imperative. RESULTS: We investigated the cellular foundations of skull frontal bone formation in the spotted gar Lepisosteus oculatus, a basally branching non-teleost actinopterygian. Whole-mount bone and cartilage staining and hematoxylin-eosin section staining revealed that mesenchymal cell condensations in the frontal bone of spotted gar develop in close association with the underlying cartilage. We also identified novel aspects of frontal bone formation: enrichment of F-actin, cellular membranes, and E-cadherin in condensing cells, and extension of podia-like structures from osteoblasts to the frontal bone, which may be responsible for bone mineral transport. CONCLUSION: This study highlights the process of frontal bone formation with dynamic architectural changes of mesenchymal cells in spotted gar, an emerging non-teleost fish model system, illuminating supposedly ancestral and likely conserved developmental mechanisms of skull bone formation among vertebrates.


Assuntos
Peixes , Osso Frontal , Animais , Desenvolvimento Ósseo , Peixes/metabolismo , Filogenia , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA