Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Cell ; 186(18): 3882-3902.e24, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37597510

RESUMO

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.


Assuntos
COVID-19 , Memória Epigenética , Síndrome de COVID-19 Pós-Aguda , Animais , Humanos , Camundongos , Diferenciação Celular , COVID-19/imunologia , Modelos Animais de Doenças , Células-Tronco Hematopoéticas , Inflamação/genética , Imunidade Treinada , Monócitos/imunologia , Síndrome de COVID-19 Pós-Aguda/genética , Síndrome de COVID-19 Pós-Aguda/imunologia , Síndrome de COVID-19 Pós-Aguda/patologia
3.
Thromb Res ; 225: 47-56, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001283

RESUMO

BACKGROUND AND OBJECTIVES: COVID-19 progression is characterized by systemic small vessel arterial and venous thrombosis. Microvascular endothelial cell (MVEC) activation and injury, platelet activation, and histopathologic features characteristic of acute COVID-19 also describe certain thrombotic microangiopathies, including atypical hemolytic-uremic syndrome (aHUS), thrombotic thrombocytopenic purpura (TTP), and hematopoietic stem cell transplant (HSCT)-associated veno-occlusive disease (VOD). We explored the effect of clinically relevant doses of defibrotide, approved for HSCT-associated VOD, on MVEC activation/injury. METHODS: Human dermal MVEC were exposed to plasmas from patients with acute TMAs or acute COVID-19 in the presence and absence of defibrotide (5µg/ml) and caspase 8, a marker of EC activation and apoptosis, was assessed. RNAseq was used to explore potential mechanisms of defibrotide activity. RESULTS: Defibrotide suppressed TMA plasma-induced caspase 8 activation in MVEC (mean 60.2 % inhibition for COVID-19; p = 0.0008). RNAseq identified six major cellular pathways associated with defibrotide's alteration of COVID-19-associated MVEC changes: TNF-α signaling; IL-17 signaling; extracellular matrix (ECM)-EC receptor and platelet receptor interactions; ECM formation; endothelin activity; and fibrosis. Communications across these pathways were revealed by STRING analyses. Forty transcripts showing the greatest changes induced by defibrotide in COVID-19 plasma/MVEC cultures included: claudin 14 and F11R (JAM), important in maintaining EC tight junctions; SOCS3 and TNFRSF18, involved in suppression of inflammation; RAMP3 and transgelin, which promote angiogenesis; and RGS5, which regulates caspase activation and apoptosis. CONCLUSION: Our data, in the context of a recent clinical trial in severe COVID-19, suggest benefits to further exploration of defibrotide and these pathways in COVID-19 and related endotheliopathies.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Doenças Vasculares , Humanos , Caspase 8 , COVID-19/complicações , Células Endoteliais , Anticoagulantes
4.
Leuk Lymphoma ; 64(3): 662-670, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36282213

RESUMO

Immunocompromised patients are susceptible to complications from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The mRNA vaccines BNT162b2 and mRNA-1273 are effective in immunocompetent adults, but have diminished activity in immunocompromised patients. We measured anti-spike SARS-CoV-2 antibody (anti-S) response, avidity, and surrogate neutralizing antibody activity in COVID-19 vaccinated patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Anti-S was induced in 89% of AML and 88% of MDS patients, but median levels were significantly lower than in healthy controls. SARS-CoV-2 antibody avidity and neutralizing activity from AML patients were significantly lower than controls. Antibody avidity was significantly greater in patients after mRNA-1273 versus BNT162b2; there were trends toward higher anti-S levels and greater neutralizing antibody activity after mRNA-1273 vaccination. Patients with AML and MDS are likely to respond to COVID-19 mRNA vaccination, but differences in anti-S levels, avidity, and neutralizing antibody activity may affect clinical outcomes and require further study.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Adulto , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Vacinas de mRNA , Síndromes Mielodisplásicas/terapia , SARS-CoV-2 , Vacinação
5.
Am J Obstet Gynecol MFM ; 5(2): 100796, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36334723

RESUMO

BACKGROUND: For some vaccine-preventable diseases, the immunologic response to vaccination is altered by a pregnant state. The effect of pregnancy on SARS-CoV-2 vaccine response remains unclear. OBJECTIVE: We sought to characterize the peak and longitudinal anti-S immunoglobulin G, immunoglobulin M, and immunoglobulin A responses to messenger RNA-based SARS-CoV-2 vaccination in pregnant persons and compare them with those in nonpregnant, reproductive-aged persons. STUDY DESIGN: We conducted 2 parallel prospective cohort studies among pregnant and nonpregnant persons who received SARS-CoV-2 messenger RNA vaccinations. Blood was collected at the time of first and second vaccine doses, 2 weeks post second dosage, and with serial longitudinal follow-up up to 41.7 weeks post vaccination initiation. Anti-S immunoglobulin M, immunoglobulin G, and immunoglobulin A were analyzed by enzyme-linked immunosorbent assay. We excluded those with previous evidence of SARS-CoV-2 infection by history or presence of antinucleocapsid antibodies. In addition, for this study, we did not include individuals who received a third or booster vaccine dosage during the study period. We also excluded pregnant persons who were not fully vaccinated (14 days post receipt of the second vaccine dosage) by time of delivery and nonpregnant persons who became pregnant through the course of the study. We studied the effect of gestational age at vaccination on the anti-S response using Spearman correlation. We compared the peak anti-S antibody responses between pregnant and nonpregnant persons using a Mann-Whitney U test. We visualized and studied the longitudinal anti-S antibody response using locally weighted scatterplot smoothing, Mann-Whitney U test, and mixed analysis of variance test. RESULTS: Data from 53 pregnant and 21 nonpregnant persons were included in this analysis. The median (interquartile range) age of the pregnant and nonpregnant participants was 35.0 (33.3-37.8) years and 36.0 (33.0-41.0) years, respectively. Six (11.3%) participants initiated vaccination in the first trimester, 23 (43.3%) in the second trimester, and 24 (45.3%) in the third trimester, with a median gestational age at delivery of 39.6 (39.0-40.0) weeks. The median (interquartile range) follow-up time from vaccine initiation to the last blood sample collected was 25.9 (11.9) weeks and 28.9 (12.9) weeks in the pregnant and nonpregnant cohort, respectively. Among pregnant persons, anti-S immunoglobulin G, immunoglobulin A, and immunoglobulin M responses were not associated with gestational age at vaccine initiation (all P>.05). The anti-S immunoglobulin G response at 2 weeks post second dosage was not statistically different between pregnant and nonpregnant persons (P>.05). However, the anti-S immunoglobulin M and immunoglobulin A responses at 2 weeks post second dosage were significantly higher in nonpregnant persons (P<.001 for both). The anti-S immunoglobulin G and immunoglobulin M levels 6 to 8 months after vaccine initiation fell to comparable proportions of the peak 2 weeks post second dosage antibody levels between pregnant and nonpregnant persons (immunoglobulin G P=.77; immunoglobulin M P=.51). In contrast, immunoglobulin A levels 6 to 8 months after vaccine initiation fell to statistically significantly higher proportions of peak 2 weeks post second dosage antibody levels in pregnant compared with nonpregnant persons (P=.002). Maternal anti-S immunoglobulin G levels were strongly correlated with umbilical cord anti-S immunoglobulin G levels (R=0.8, P<.001). CONCLUSION: The anti-S immunoglobulin A, immunoglobulin M, and immunoglobulin G response to SARS-CoV-2 vaccination in pregnancy is independent of gestational age of vaccine initiation. Maintenance of the immunoglobulin G response is comparable between pregnant and nonpregnant persons. The differential peak response of immunoglobulin M and immunoglobulin A and the differential decline of anti-S immunoglobulin A between pregnant and nonpregnant persons requires further investigation.


Assuntos
Formação de Anticorpos , COVID-19 , Feminino , Gravidez , Humanos , Adulto , Lactente , Vacinas contra COVID-19 , SARS-CoV-2/genética , Estudos Prospectivos , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação , Imunoglobulina G , Imunoglobulina M , Imunoglobulina A
6.
iScience ; 25(7): 104612, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35756895

RESUMO

The coronavirus disease-19 (COVID-19) pandemic has ravaged global healthcare with previously unseen levels of morbidity and mortality. In this study, we performed large-scale integrative multi-omics analyses of serum obtained from COVID-19 patients with the goal of uncovering novel pathogenic complexities of this disease and identifying molecular signatures that predict clinical outcomes. We assembled a network of protein-metabolite interactions through targeted metabolomic and proteomic profiling in 330 COVID-19 patients compared to 97 non-COVID, hospitalized controls. Our network identified distinct protein-metabolite cross talk related to immune modulation, energy and nucleotide metabolism, vascular homeostasis, and collagen catabolism. Additionally, our data linked multiple proteins and metabolites to clinical indices associated with long-term mortality and morbidity. Finally, we developed a novel composite outcome measure for COVID-19 disease severity based on metabolomics data. The model predicts severe disease with a concordance index of around 0.69, and shows high predictive power of 0.83-0.93 in two independent datasets.

7.
Am J Pathol ; 192(9): 1282-1294, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35640675

RESUMO

Apart from autopsy, tissue correlates of coronavirus disease 2019 (COVID-19) clinical stage are lacking. In the current study, cutaneous punch biopsy specimens of 15 individuals with severe/critical COVID-19 and six with mild/moderate COVID-19 were examined. Evidence for arterial and venous microthrombi, deposition of C5b-9 and MASP2 (representative of alternative and lectin complement pathways, respectively), and differential expression of interferon type I-driven antiviral protein MxA (myxovirus resistance A) versus SIN3A, a promoter of interferon type I-based proinflammatory signaling, were assessed. Control subjects included nine patients with sepsis-related acute respiratory distress syndrome (ARDS) and/or acute kidney injury (AKI) pre-COVID-19. Microthrombi were detected in 13 (87%) of 15 patients with severe/critical COVID-19 versus zero of six patients with mild/moderate COVID-19 (P < 0.001) and none of the nine patients with pre-COVID-19 ARDS/AKI (P < 0.001). Cells lining the microvasculature staining for spike protein of severe acute respiratory syndrome coronavirus 2, the etiologic agent of COVID-19, also expressed tissue factor. C5b-9 deposition occurred in 13 (87%) of 15 patients with severe/critical COVID-19 versus zero of six patients with mild/moderate COVID-19 (P < 0.001) and none of the nine patients with pre-COVID-19 ARDS/AKI (P < 0.001). MASP2 deposition was also restricted to severe/critical COVID-19 cases. MxA expression occurred in all six mild/moderate versus two (15%) of 13 severe/critical cases (P < 0.001) of COVID-19. In contrast, SIN3A was restricted to severe/critical COVID-19 cases co-localizing with severe acute respiratory syndrome coronavirus 2 spike protein. SIN3A was also elevated in plasma of patients with severe/critical COVID-19 versus control subjects (P ≤ 0.02). In conclusion, the study identified premortem tissue correlates of COVID-19 clinical stage using skin. If validated in a longitudinal cohort, this approach could identify individuals at risk for disease progression and enable targeted interventions.


Assuntos
Injúria Renal Aguda , COVID-19 , Interferon Tipo I , Síndrome do Desconforto Respiratório , Trombose , Antivirais , Biópsia , Complexo de Ataque à Membrana do Sistema Complemento , Humanos , Serina Proteases Associadas a Proteína de Ligação a Manose , Glicoproteína da Espícula de Coronavírus
8.
Biosens Bioelectron ; 209: 114237, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447596

RESUMO

Kinetics measurements of antigen-antibody binding interactions are critical to understanding the functional efficiency of SARS-CoV-2 antibodies. Previously reported chaotrope-based avidity assays that rely on artificial disruption of binding do not reflect the natural binding kinetics. This study developed a chaotrope- and label-free biolayer interferometry (BLI) assay for the real-time monitoring of receptor binding domain (RBD) binding kinetics with SARS-CoV-2 spike protein in convalescent COVID-19 patients. An improved conjugation biosensor probe coated with streptavidin-polysaccharide (SA-PS) led to a six-fold increase of signal intensities and two-fold reduction of non-specific binding (NSB) compared to streptavidin only probe. Furthermore, by utilizing a separate reference probe and biotin-human serum albumin (B-HSA) blocking process to subtracted NSB signal in serum, this BLI biosensor can measure a wide range of the dissociation rate constant (koff), which can be measured without knowledge of the specific antibody concentrations. The clinical utility of this improved BLI kinetics assay was demonstrated by analyzing the koff values in sera of 24 pediatric (≤18 years old) and 63 adult (>18 years old) COVID-19 convalescent patients. Lower koff values for SARS-CoV-2 serum antibodies binding to RBD were measured in samples from children. This rapid, easy to operate and chaotrope-free BLI assay is suitable for clinical use and can be readily adapted to characterize SARS-CoV-2 antibodies developed by COVID-19 patients and vaccines.


Assuntos
Técnicas Biossensoriais , COVID-19 , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Criança , Humanos , Técnicas Imunológicas , Interferometria , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Estreptavidina
9.
Pediatr Emerg Care ; 38(2): e743-e745, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100772

RESUMO

OBJECTIVES: It is well established that early antibiotic administration leads to improved outcomes in febrile neutropenic patients. To achieve this, many institutions administer empiric antibiotics to all febrile oncology patients in the emergency setting, before knowing their neutropenic status. This study evaluates the role of rapid absolute neutrophil count (ANC) testing in the targeted antimicrobial management of nonneutropenic febrile oncology patients. METHODS: We conducted a retrospective review of patients 19 years or younger presenting to the pediatric emergency service with an oncologic process and fever or history of fever. We examined the administration of antibiotics and outcomes in nonneutropenic patients. RESULTS: We included 101 patient encounters, representing 62 distinct patients. The rapid ANC test influenced antibiotic management in 94% (95/101) of patient encounters and resulted in no antibiotics or targeted antibiotic therapy in 88% (60/68) of nonneutropenic patients. Use of the rapid ANC test to guide treatment would have spared antibiotic administration in 68% (46/68) of well-appearing nonneutropenic patients with no alternate indication. No well-appearing, nonneutropenic patient had a positive blood culture, and only 1 required hospital admission on a repeat visit. CONCLUSIONS: The rapid ANC is a useful tool to balance the goal of early antibiotic administration in febrile neutropenic oncology patients while promoting antibiotic stewardship in this vulnerable population.


Assuntos
Neoplasias , Neutrófilos , Antibacterianos/uso terapêutico , Criança , Febre/tratamento farmacológico , Febre/etiologia , Humanos , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Estudos Retrospectivos
10.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499052

RESUMO

Longitudinal studies are needed to evaluate the SARS-CoV-2 mRNA vaccine antibody response under real-world conditions. This longitudinal study investigated the quantity and quality of SARS-CoV-2 antibody response in 846 specimens from 350 patients, comparing BNT162b2-vaccinated individuals (19 previously diagnosed with COVID-19, termed RecoVax; and 49 never diagnosed, termed NaiveVax) with 122 hospitalized unvaccinated (HospNoVax) and 160 outpatient unvaccinated (OutPtNoVax) COVID-19 patients. NaiveVax experienced delay in generating SARS-CoV-2 total antibodies (TAb) and surrogate neutralizing antibodies (SNAb) after the first vaccine dose (D1) but rapid increase in antibody levels after the second dose (D2). However, these never reached RecoVax's robust levels. In fact, NaiveVax TAb and SNAb levels decreased 4 weeks after D2. For the most part, RecoVax TAb persisted, after reaching maximal levels 2 weeks after D2, but SNAb decreased significantly about 6 months after D1. Although NaiveVax avidity lagged behind that of RecoVax for most of the follow-up periods, NaiveVax did reach similar avidity by about 6 months after D1. These data suggest that 1 vaccine dose elicits maximal antibody response in RecoVax and may be sufficient. Also, despite decreasing levels in TAb and SNAb over time, long-term avidity may be a measure worth evaluating and possibly correlating to vaccine efficacy.


Assuntos
Formação de Anticorpos , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas Sintéticas/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Vacinação , Vacinas de mRNA
11.
Case Reports Hepatol ; 2021: 9928098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336313

RESUMO

The standard serologic markers used to diagnose hepatitis B infection include hepatitis B surface antigen (HBsAg), hepatitis B surface antibody (anti-HBs), total hepatitis B core antibody (anti-HBc), and IgM antibody to hepatitis B core antigen (IgM anti-HBc). Different markers or combinations of markers are used to identify different phases of HBV infection and determine whether a patient has acute or chronic infection or immunity due to prior infection or vaccination or is seronegative and susceptible to future infection. Isolated HBsAg seropositivity is a peculiar serological pattern that requires investigation. Herein, we present a case of an asymptomatic female without a history of liver disease or evident risk factors for hepatitis, who underwent screening for infectious disease prior to resection of basal cell carcinoma involving her eyelid. The patient's laboratory testing showed positivity for HBsAg and the HIV 1/2 screen. To investigate, we performed serial dilutions, utilized heterophilicantibody blocking tubes, and repeated analysis using a different commercial assay (Abbott Architect i2000), all in support of a false-positive result attributed to a heterophilic antibody. Hence, we demonstrate that heterophilic antibody interference can result in isolated HBsAg positivity and recommend considering this form of interference in the differential where there is low clinical suspicion for viral infection.

12.
Microbiol Spectr ; 9(1): e0008321, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34378961

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has taken an unprecedented toll on clinical diagnostic testing, and the need for PCR-based testing remains to be met. Nucleic acid amplification testing (NAAT) is the recommended method for the diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to the inherent advantages in sensitivity and specificity. In this study, we evaluated the performance of the MatMaCorp COVID-19 2SF test, a reverse transcription-PCR (RT-PCR) assay for the qualitative detection of SARS-CoV-2 from nasopharyngeal (NP) swabs, run on the Solas 8 instrument (MatMaCorp, Lincoln, NE). The Solas 8 device is portable, and the kit is a lab-in-a-box design which provides reagents in a shelf-stable lyophilized powder format. A total of 78 remnant clinical specimens were used to evaluate the COVID-19 2SF test. Sixty-two clinical specimens originally tested by the Xpert Xpress SARS-CoV-2 assay (Cepheid, Inc., Sunnyvale, CA) were used to evaluate the clinical accuracy of the COVID-19 2SF test. The negative percent agreement (NPA) was 100% (95% confidence interval [CI], 83.9% to 100%), and the positive percent agreement (PPA) was 85.4% (95% CI, 70.8% to 94.4%). Sixteen remnant specimens positive for other common respiratory pathogens (FilmArray respiratory panel 2.0; BioFire, Salt Lake City, UT) were assayed on the Solas 8 device to evaluate specificity. No cross-reactivity with other respiratory pathogens was identified. The unique lab-in-a-box design and shelf-stable reagents of the MatMaCorp COVID-19 2SF test offer laboratories a rapid option for a diagnostic NAAT for SARS-CoV-2 that can help meet diagnostic needs. IMPORTANCE The demand for molecular testing for COVID-19 remains to be met. This study of the MatMaCorp Solas 8 device and COVID-19 test provides the first evaluation of this platform.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Nasofaringe/virologia , SARS-CoV-2/isolamento & purificação , Testes Diagnósticos de Rotina , Humanos , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade , Manejo de Espécimes
13.
Sci Rep ; 11(1): 12606, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131192

RESUMO

Increasing evidence has shown that Coronavirus disease 19 (COVID-19) severity is driven by a dysregulated immunologic response. We aimed to assess the differences in inflammatory cytokines in COVID-19 patients compared to contemporaneously hospitalized controls and then analyze the relationship between these cytokines and the development of Acute Respiratory Distress Syndrome (ARDS), Acute Kidney Injury (AKI) and mortality. In this cohort study of hospitalized patients, done between March third, 2020 and April first, 2020 at a quaternary referral center in New York City we included adult hospitalized patients with COVID-19 and negative controls. Serum specimens were obtained on the first, second, and third hospital day and cytokines were measured by Luminex. Autopsies of nine cohort patients were examined. We identified 90 COVID-19 patients and 51 controls. Analysis of 48 inflammatory cytokines revealed upregulation of macrophage induced chemokines, T-cell related interleukines and stromal cell producing cytokines in COVID-19 patients compared to the controls. Moreover, distinctive cytokine signatures predicted the development of ARDS, AKI and mortality in COVID-19 patients. Specifically, macrophage-associated cytokines predicted ARDS, T cell immunity related cytokines predicted AKI and mortality was associated with cytokines of activated immune pathways, of which IL-13 was universally correlated with ARDS, AKI and mortality. Histopathological examination of the autopsies showed diffuse alveolar damage with significant mononuclear inflammatory cell infiltration. Additionally, the kidneys demonstrated glomerular sclerosis, tubulointerstitial lymphocyte infiltration and cortical and medullary atrophy. These patterns of cytokine expression offer insight into the pathogenesis of COVID-19 disease, its severity, and subsequent lung and kidney injury suggesting more targeted treatment strategies.


Assuntos
COVID-19/mortalidade , COVID-19/fisiopatologia , Citocinas/sangue , Injúria Renal Aguda/sangue , Injúria Renal Aguda/patologia , Injúria Renal Aguda/virologia , Idoso , COVID-19/sangue , COVID-19/terapia , Estudos de Casos e Controles , Síndrome da Liberação de Citocina/virologia , Feminino , Hospitais , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Respiração Artificial , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/virologia , Resultado do Tratamento
14.
J Blood Med ; 12: 327-336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079412

RESUMO

Daratumumab, a monoclonal antibody therapeutic, is highly efficacious and widely used in all stages of multiple myeloma and amyloidosis and has promising activity in other hematologic disorders. Daratumumab interacts with red blood cells, interfering with pre-transfusion testing. This interference can lead to compromising transfusion safety, extensive blood bank work ups and delays in provision of compatible units. Several methods have been developed to negate daratumumab interference with indirect antiglobulin testing. They are based on i) standard blood bank techniques including dithiothreitol and enzymatic treatment of reagent cells, using reagent red blood cells negative for CD38, ii) blocking CD38 antigens on reagent or donor cells, iii) neutralization of anti-CD38 antibody in patient plasma prior to testing, and iv) extended antigen typing of patient red blood cells in conjunction with provision of phenotypically matched units for transfusion. Implementation of those methods by the blood bank should be a planned effort coordinated with the patient's clinical team. Timely involvement of blood bank and transfusion services and educational efforts by both blood banks and clinical providers can improve the overall daratumumab safety profile in regard to blood transfusion.

15.
Clin Chim Acta ; 519: 308-310, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34051269

RESUMO

BACKGROUND: Major discrepancies between concentrations of serum total carbon dioxide (tCO2) obtained from chemistry analyzers and calculated bicarbonate from blood gas analyzers should prompt laboratory investigation. Here, we present a rare case of pseudohypobicarbonatemia unrelated to the common causes such as hypertriglyceridemia and hyperproteinemia, but was caused by a low concentration of paraproteins. CASE: A 75-year-old man with persistent fevers was found to have a low concentration of serum tCO2 (<10 mmol/l) with a normal pH and calculated bicarbonate concentrations (23.5 mmol/l) from the blood gas analyzer. His serum tCO2 concentrations remained critically low throughout hospitalization without any evidence of acidosis. Serum tCO2 levels were measured via Siemens ADVIA Chemistry XPT system. RESULTS: Mixing studies revealed non-linearity of serum tCO2, suggesting the presence of interfering substances. Triglyceride concentrations were normal. Serum electrophoresis revealed a 0.4 mg/dl M-protein. The patient's serum tCO2 concentrations were repeated on different chemistry analyzer platforms - including Siemens, Roche, and Abbott - which demonstrated that the interference was specific to the Siemens chemistry analyzer. Serum tCO2 was significantly elevated after ultrafiltration of paraprotein, which confirmed the root cause of pseudohypobicarbonatemia. CONCLUSION: Laboratory professionals should be aware that spuriously low serum tCO2 concentrations may result from unique interfering substances, such as paraproteins, that are both patient- and chemistry analyzer-specific.


Assuntos
Acidose , Dióxido de Carbono , Idoso , Bicarbonatos , Gasometria , Humanos , Masculino , Paraproteínas
16.
Clin Chem ; 67(9): 1249-1258, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33914041

RESUMO

BACKGROUND: Low initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody titers dropping to undetectable levels within months after infection have raised concerns about long-term immunity. Both the antibody levels and the avidity of the antibody-antigen interaction should be examined to understand the quality of the antibody response. METHODS: A testing-on-a-probe "plus" panel (TOP-Plus) was developed to include a newly developed avidity assay built into the previously described SARS-CoV-2 TOP assays that measured total antibody (TAb), surrogate neutralizing antibody (SNAb), IgM, and IgG on a versatile biosensor platform. TAb and SNAb levels were compared with avidity in previously infected individuals at 1.3 and 6.2 months after infection in paired samples from 80 patients with coronavirus disease 2019 (COVID-19). Sera from individuals vaccinated for SARS-CoV-2 were also evaluated for antibody avidity. RESULTS: The newly designed avidity assay in this TOP panel correlated well with a reference Bio-Layer Interferometry avidity assay (r = 0.88). The imprecision of the TOP avidity assay was <10%. Although TAb and neutralization activity (by SNAb) decreased between 1.3 and 6.2 months after infection, the antibody avidity increased significantly (P < 0.0001). Antibody avidity in 10 SARS-CoV-2 vaccinated individuals (median: 28 days after vaccination) was comparable to the measured antibody avidity in infected individuals (median: 26 days after infection). CONCLUSIONS: This highly precise and versatile TOP-Plus panel with the ability to measure SARS-CoV-2 TAb, SNAb, IgG, and IgM antibody levels and avidity of individual sera on one sensor can become a valuable asset in monitoring not only patients infected with SARS-CoV-2 but also the status of individuals' COVID-19 vaccination response.


Assuntos
Anticorpos Antivirais/sangue , Afinidade de Anticorpos/fisiologia , Técnicas Biossensoriais/métodos , COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Interferometria , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Fatores de Tempo , Adulto Jovem
17.
JAMA Netw Open ; 4(3): e214302, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33749770

RESUMO

Importance: Accumulating evidence suggests that children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more likely to manifest mild symptoms and are at a lower risk of developing severe respiratory disease compared with adults. It remains unknown how the immune response in children differs from that of adolescents and adults. Objective: To investigate the association of age with the quantity and quality of SARS-CoV-2 antibody responses. Design, Setting, and Participants: This cross-sectional study used 31 426 SARS-CoV-2 antibody test results from pediatric and adult patients. Data were collected from a New York City hospital from April 9 to August 31, 2020. The semiquantitative immunoglobin (Ig) G levels were compared between 85 pediatric and 3648 adult patients. Further analysis of SARS-CoV-2 antibody profiles was performed on sera from 126 patients aged 1 to 24 years. Main Outcomes and Measures: SARS-CoV-2 antibody positivity rates and IgG levels were evaluated in patients from a wide range of age groups (1-102 years). SARS-CoV-2 IgG level, total antibody (TAb) level, surrogate neutralizing antibody (SNAb) activity, and antibody binding avidity were compared between children (aged 1-10 years), adolescents (aged 11-18 years), and young adults (aged 19-24 years). Results: Among 31 426 antibody test results (19 797 [63.0%] female patients), with 1194 pediatric patients (mean [SD] age, 11.0 [5.3] years) and 30 232 adult patients (mean [SD] age, 49.2 [17.1] years), the seroprevalence in the pediatric (197 [16.5%; 95% CI, 14.4%-18.7%]) and adult (5630 [18.6%; 95% CI, 18.2%-19.1%]) patient populations was similar. The SARS-CoV-2 IgG level showed a negative correlation with age in the pediatric population (r = -0.45, P < .001) and a moderate but positive correlation with age in adults (r = 0.24, P < .001). Patients aged 19 to 30 years exhibited the lowest IgG levels (eg, aged 25-30 years vs 1-10 years: 99 [44-180] relative fluorescence units [RFU] vs 443 [188-851] RFU). In the subset cohort aged 1 to 24 years, IgG, TAb, SNAb and avidity were negatively correlated with age (eg, IgG: r = -0.51; P < .001). Children exhibited higher median (IQR) IgG levels, TAb levels, and SNAb activity compared with adolescents (eg, IgG levels: 473 [233-656] RFU vs 191 [82-349] RFU; P < .001) and young adults (eg, IgG levels: 473 [233-656] RFU vs 85 [38-150] RFU; P < .001). Adolescents also exhibited higher median (IQR) TAb levels, IgG levels, and SNAb activity than young adults (eg, TAb levels: 961 [290-2074] RFU vs 370 [125-697]; P = .006). In addition, children had higher antibody binding avidity compared with young adults, but the difference was not significant. Conclusions and Relevance: The results of this study suggest that SARS-CoV-2 viral specific antibody response profiles are distinct in different age groups. Age-targeted strategies for disease screening and management as well as vaccine development may be warranted.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Afinidade de Anticorpos/imunologia , Formação de Anticorpos/imunologia , COVID-19 , SARS-CoV-2 , Fatores Etários , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/imunologia , Teste Sorológico para COVID-19/métodos , Teste Sorológico para COVID-19/estatística & dados numéricos , Criança , Correlação de Dados , Estudos Transversais , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação
18.
J Clin Endocrinol Metab ; 106(5): e2025-e2034, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33524125

RESUMO

PURPOSE: Comorbidities making up metabolic syndrome (MetS), such as obesity, type 2 diabetes, and chronic cardiovascular disease can lead to increased risk of coronavirus disease-2019 (COVID-19) with a higher morbidity and mortality. SARS-CoV-2 antibodies are higher in severely or critically ill COVID-19 patients, but studies have not focused on levels in convalescent patients with MetS, which this study aimed to assess. METHODS: This retrospective study focused on adult convalescent outpatients with SARS-CoV-2 positive serology during the COVID-19 pandemic at NewYork Presbyterian/Weill Cornell. Data collected for descriptive and correlative analysis included SARS-COV-2 immunoglobin G (IgG) levels and history of MetS comorbidities from April 17, 2020 to May 20, 2020. Additional data, including SARS-CoV-2 IgG levels, body mass index (BMI), hemoglobin A1c (HbA1c) and lipid levels were collected and analyzed for a second cohort from May 21, 2020 to June 21, 2020. SARS-CoV-2 neutralizing antibodies were measured in a subset of the study cohort. RESULTS: SARS-CoV-2 IgG levels were significantly higher in convalescent individuals with MetS comorbidities. When adjusted for age, sex, race, and time duration from symptom onset to testing, increased SARS-CoV-2 IgG levels remained significantly associated with obesity (P < 0.0001). SARS-CoV-2 IgG levels were significantly higher in patients with HbA1c ≥6.5% compared to those with HbA1c <5.7% (P = 0.0197) and remained significant on multivariable analysis (P = 0.0104). A positive correlation was noted between BMI and antibody levels [95% confidence interval: 0.37 (0.20-0.52) P < 0.0001]. Neutralizing antibody titers were higher in COVID-19 individuals with BMI ≥ 30 (P = 0.0055). CONCLUSION: Postconvalescent SARS-CoV-2 IgG and neutralizing antibodies are elevated in obese patients, and a positive correlation exists between BMI and antibody levels.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , Imunoglobulina G/imunologia , Síndrome Metabólica/imunologia , Adulto , Anticorpos Neutralizantes/sangue , COVID-19/sangue , COVID-19/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/virologia , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/virologia , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/imunologia , Obesidade/virologia , Estudos Retrospectivos
19.
medRxiv ; 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33564790

RESUMO

BACKGROUND: There is a concern that low initial SARS-CoV-2 antibody titers in individuals may drop to undetectable levels within months after infection. Although this may raise concerns over long term immunity, both the antibody levels and avidity of the antibody-antigen interaction should be examined to understand the quality of the antibody response. METHODS: A testing-on-a-probe-plus panel (TOP-Plus) was developed, which included a newly developed avidity assay built into the previously described SARS-CoV-2 TOP assays that measured total antibody (TAb), surrogate neutralizing antibody (SNAb), IgM and IgG on a versatile biosensor platform. TAb and SNAb levels were compared with avidity in previously infected individuals at 1.3 and 6.2 months post-infection in paired samples from 80 COVID-19 patients. RESULTS: The newly designed avidity assay in this TOP panel correlated well with a reference Bio-Layer Interferometry avidity assay (R=0.88). The imprecision of the TOP avidity assay was less than 9%. Although TAb and neutralization activity (by SNAb) decreased between 1.3 and 6.2 months post infection, the antibody avidity increased significantly (P < 0.0001).

20.
Biosens Bioelectron ; 178: 113008, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33515984

RESUMO

The association of mortality with the early humoral response to SARS-CoV-2 infection within the first few days after onset of symptoms (DAOS) has not been thoroughly investigated partly due to a lack of sufficiently sensitive antibody testing methods. Here we report two sensitive and automated testing-on-a-probe (TOP) biosensor assays for SARS-CoV-2 viral specific total antibodies (TAb) and surrogate neutralizing antibodies (SNAb), which are suitable for clinical use. The TOP assays employ an RBD-coated quartz probe using a Cy5-Streptavidin-polysacharide conjugate to improve sensitivity and minimize interference. Disposable cartridges containing pre-dispensed reagents require no liquid manipulation or fluidics during testing. The TOP-TAb assay exhibited higher sensitivity in the 0-7 DAOS window than a widely used FDA-EUA assay. The rapid and automated TOP-SNAb correlated well with two well-established SARS-CoV-2 virus neutralization tests. The clinical utility of the TOP assays was demonstrated by evaluating early antibody responses in 120 SARS-CoV-2 RT-PCR positive adult hospitalized patients. Higher TAb and SNAb positivity rates and more robust antibody responses at patient's initial hospital presentation were seen in inpatients who survived COVID-19 than those who died in the hospital. Survival analysis using the Cox Proportional Hazards Model showed that patients who had negative TAb and/or SNAb at initial hospital presentation were at a higher risk of in-hospital mortality. Furthermore, TAb and SNAb levels at presentation were inversely associated with SARS-CoV-2 viral load based on concurrent RT-PCR testing. Overall, the sensitive and automated TAb and SNAb assays allow the detection of early SARS-CoV-2 antibodies which associate with mortality.


Assuntos
Anticorpos Antivirais/sangue , Técnicas Biossensoriais/instrumentação , Teste Sorológico para COVID-19/instrumentação , COVID-19/imunologia , COVID-19/mortalidade , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Técnicas Biossensoriais/estatística & dados numéricos , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , Teste Sorológico para COVID-19/estatística & dados numéricos , Estudos de Coortes , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização/estatística & dados numéricos , Cidade de Nova Iorque/epidemiologia , Pandemias , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA