Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
medRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766049

RESUMO

Individuals with Autism Spectrum Disorder may display interfering behaviors that limit their inclusion in educational and community settings, negatively impacting their quality of life. These behaviors may also signal potential medical conditions or indicate upcoming high-risk behaviors. This study explores behavior patterns that precede high-risk, challenging behaviors or seizures the following day. We analyzed an existing dataset of behavior and seizure data from 331 children with profound ASD over nine years. We developed a deep learning-based algorithm designed to predict the likelihood of aggression, elopement, and self-injurious behavior (SIB) as three high-risk behavioral events, as well as seizure episodes as a high-risk medical event occurring the next day. The proposed model attained accuracies of 78.4%, 80.68%, 85.43%, and 69.95% for predicting the next-day occurrence of aggression, SIB, elopement, and seizure episodes, respectively. The results were proven significant for more than 95% of the population for all high-risk event predictions using permutation-based statistical tests. Our findings emphasize the potential of leveraging historical behavior data for the early detection of high-risk behavioral and medical events, paving the way for behavioral interventions and improved support in both social and educational environments.

2.
medRxiv ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38343835

RESUMO

Poor sleep quality in Autism Spectrum Disorder (ASD) individuals is linked to severe daytime behaviors. This study explores the relationship between a prior night's sleep structure and its predictive power for next-day behavior in ASD individuals. The motion was extracted using a low-cost near-infrared camera in a privacy-preserving way. Over two years, we recorded overnight data from 14 individuals, spanning over 2,000 nights, and tracked challenging daytime behaviors, including aggression, self-injury, and disruption. We developed an ensemble machine learning algorithm to predict next-day behavior in the morning and the afternoon. Our findings indicate that sleep quality is a more reliable predictor of morning behavior than afternoon behavior the next day. The proposed model attained an accuracy of 74% and a F1 score of 0.74 in target-sensitive tasks and 67% accuracy and 0.69 F1 score in target-insensitive tasks. For 7 of the 14, better-than-chance balanced accuracy was obtained (p-value<0.05), with 3 showing significant trends (p-value<0.1). These results suggest off-body, privacy-preserving sleep monitoring as a viable method for predicting next-day adverse behavior in ASD individuals, with the potential for behavioral intervention and enhanced care in social and learning settings.

3.
IEEE J Biomed Health Inform ; 28(3): 1680-1691, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198249

RESUMO

OBJECTIVE: Psychiatric evaluation suffers from subjectivity and bias, and is hard to scale due to intensive professional training requirements. In this work, we investigated whether behavioral and physiological signals, extracted from tele-video interviews, differ in individuals with psychiatric disorders. METHODS: Temporal variations in facial expression, vocal expression, linguistic expression, and cardiovascular modulation were extracted from simultaneously recorded audio and video of remote interviews. Averages, standard deviations, and Markovian process-derived statistics of these features were computed from 73 subjects. Four binary classification tasks were defined: detecting 1) any clinically-diagnosed psychiatric disorder, 2) major depressive disorder, 3) self-rated depression, and 4) self-rated anxiety. Each modality was evaluated individually and in combination. RESULTS: Statistically significant feature differences were found between psychiatric and control subjects. Correlations were found between features and self-rated depression and anxiety scores. Heart rate dynamics provided the best unimodal performance with areas under the receiver-operator curve (AUROCs) of 0.68-0.75 (depending on the classification task). Combining multiple modalities provided AUROCs of 0.72-0.82. CONCLUSION: Multimodal features extracted from remote interviews revealed informative characteristics of clinically diagnosed and self-rated mental health status. SIGNIFICANCE: The proposed multimodal approach has the potential to facilitate scalable, remote, and low-cost assessment for low-burden automated mental health services.


Assuntos
Transtorno Depressivo Maior , Saúde Mental , Humanos , Transtornos de Ansiedade , Linguística , Biomarcadores
4.
ArXiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36713244

RESUMO

OBJECTIVE: Gaussian Processes (GP)-based filters, which have been effectively used for various applications including electrocardiogram (ECG) filtering can be computationally demanding and the choice of their hyperparameters is typically ad hoc. METHODS: We develop a data-driven GP filter to address both issues, using the notion of the ECG phase domain -- a time-warped representation of the ECG beats onto a fixed number of samples and aligned R-peaks, which is assumed to follow a Gaussian distribution. Under this assumption, the computation of the sample mean and covariance matrix is simplified, enabling an efficient implementation of the GP filter in a data-driven manner, with no ad hoc hyperparameters. The proposed filter is evaluated and compared with a state-of-the-art wavelet-based filter, on the PhysioNet QT Database. The performance is evaluated by measuring the signal-to-noise ratio (SNR) improvement of the filter at SNR levels ranging from -5 to 30dB, in 5dB steps, using additive noise. For a clinical evaluation, the error between the estimated QT-intervals of the original and filtered signals is measured and compared with the benchmark filter. RESULTS: It is shown that the proposed GP filter outperforms the benchmark filter for all the tested noise levels. It also outperforms the state-of-the-art filter in terms of QT-interval estimation error bias and variance. CONCLUSION: The proposed GP filter is a versatile technique for preprocessing the ECG in clinical and research applications, is applicable to ECG of arbitrary lengths and sampling frequencies, and provides confidence intervals for its performance.

5.
Psychophysiology ; 61(4): e14488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37986190

RESUMO

Post-traumatic stress disorder (PTSD) is an independent risk factor for developing heart failure; however, the underlying cardiac mechanisms are still elusive. This study aims to evaluate the real-time effects of experimentally induced PTSD symptom activation on various cardiac contractility and autonomic measures. We recorded synchronized electrocardiogram and impedance cardiogram from 137 male veterans (17 PTSD, 120 non-PTSD; 48 twin pairs, 41 unpaired singles) during a laboratory-based traumatic reminder stressor. To identify the parameters describing the cardiac mechanisms by which trauma reminders can create stress on the heart, we utilized a feature selection mechanism along with a random forest classifier distinguishing PTSD and non-PTSD. We extracted 99 parameters, including 76 biosignal-based and 23 sociodemographic, medical history, and psychiatric diagnosis features. A subject/twin-wise stratified nested cross-validation procedure was used for parameter tuning and model assessment to identify the important parameters. The identified parameters included biomarkers such as pre-ejection period, acceleration index, velocity index, Heather index, and several physiology-agnostic features. These identified parameters during trauma recall suggested a combination of increased sympathetic nervous system (SNS) activity and deteriorated cardiac contractility that may increase the heart failure risk for PTSD. This indicates that the PTSD symptom activation associates with real-time reductions in several cardiac contractility measures despite SNS activation. This finding may be useful in future cardiac prevention efforts.


Assuntos
Insuficiência Cardíaca , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Masculino , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Impedância Elétrica , Rememoração Mental/fisiologia , Gêmeos , Veteranos/psicologia
6.
PLOS Digit Health ; 2(9): e0000324, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37695769

RESUMO

Cardiac auscultation is an accessible diagnostic screening tool that can help to identify patients with heart murmurs, who may need follow-up diagnostic screening and treatment for abnormal cardiac function. However, experts are needed to interpret the heart sounds, limiting the accessibility of cardiac auscultation in resource-constrained environments. Therefore, the George B. Moody PhysioNet Challenge 2022 invited teams to develop algorithmic approaches for detecting heart murmurs and abnormal cardiac function from phonocardiogram (PCG) recordings of heart sounds. For the Challenge, we sourced 5272 PCG recordings from 1452 primarily pediatric patients in rural Brazil, and we invited teams to implement diagnostic screening algorithms for detecting heart murmurs and abnormal cardiac function from the recordings. We required the participants to submit the complete training and inference code for their algorithms, improving the transparency, reproducibility, and utility of their work. We also devised an evaluation metric that considered the costs of screening, diagnosis, misdiagnosis, and treatment, allowing us to investigate the benefits of algorithmic diagnostic screening and facilitate the development of more clinically relevant algorithms. We received 779 algorithms from 87 teams during the Challenge, resulting in 53 working codebases for detecting heart murmurs and abnormal cardiac function from PCG recordings. These algorithms represent a diversity of approaches from both academia and industry, including methods that use more traditional machine learning techniques with engineered clinical and statistical features as well as methods that rely primarily on deep learning models to discover informative features. The use of heart sound recordings for identifying heart murmurs and abnormal cardiac function allowed us to explore the potential of algorithmic approaches for providing more accessible diagnostic screening in resource-constrained environments. The submission of working, open-source algorithms and the use of novel evaluation metrics supported the reproducibility, generalizability, and clinical relevance of the research from the Challenge.

7.
IEEE J Biomed Health Inform ; 27(8): 3856-3866, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37163396

RESUMO

OBJECTIVE: Murmurs are abnormal heart sounds, identified by experts through cardiac auscultation. The murmur grade, a quantitative measure of the murmur intensity, is strongly correlated with the patient's clinical condition. This work aims to estimate each patient's murmur grade (i.e., absent, soft, loud) from multiple auscultation location phonocardiograms (PCGs) of a large population of pediatric patients from a low-resource rural area. METHODS: The Mel spectrogram representation of each PCG recording is given to an ensemble of 15 convolutional residual neural networks with channel-wise attention mechanisms to classify each PCG recording. The final murmur grade for each patient is derived based on the proposed decision rule and considering all estimated labels for available recordings. The proposed method is cross-validated on a dataset consisting of 3456 PCG recordings from 1007 patients using a stratified ten-fold cross-validation. Additionally, the method was tested on a hidden test set comprised of 1538 PCG recordings from 442 patients. RESULTS: The overall cross-validation performances for patient-level murmur gradings are 86.3% and 81.6% in terms of the unweighted average of sensitivities and F1-scores, respectively. The sensitivities (and F1-scores) for absent, soft, and loud murmurs are 90.7% (93.6%), 75.8% (66.8%), and 92.3% (84.2%), respectively. On the test set, the algorithm achieves an unweighted average of sensitivities of 80.4% and an F1-score of 75.8%. CONCLUSIONS: This study provides a potential approach for algorithmic pre-screening in low-resource settings with relatively high expert screening costs. SIGNIFICANCE: The proposed method represents a significant step beyond detection of murmurs, providing characterization of intensity, which may provide an enhanced classification of clinical outcomes.


Assuntos
Sopros Cardíacos , Ruídos Cardíacos , Humanos , Criança , Fonocardiografia/métodos , Sopros Cardíacos/diagnóstico , Auscultação Cardíaca/métodos , Algoritmos , Auscultação
8.
Psychophysiology ; 60(3): e14197, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36285491

RESUMO

Post-traumatic stress disorder (PTSD) is an independent risk factor for incident heart failure, but the underlying cardiac mechanisms remained elusive. Impedance cardiography (ICG), especially when measured during stress, can help understand the underlying psychophysiological pathways linking PTSD with heart failure. We investigated the association between PTSD and ICG-based contractility metrics (pre-ejection period (PEP) and Heather index (HI)) using a controlled twin study design with a laboratory-based traumatic reminder stressor. PTSD status was assessed using structured clinical interviews. We acquired synchronized electrocardiograms and ICG data while playing personalized-trauma scripts. Using linear mixed-effects models, we examined twins as individuals and within PTSD-discordant pairs. We studied 137 male veterans (48 pairs, 41 unpaired singles) from Vietnam War Era with a mean (standard deviation) age of 68.5(2.5) years. HI during trauma stress was lower in the PTSD vs. non-PTSD individuals (7.2 vs. 9.3 [ohm/s2 ], p = .003). PEP reactivity (trauma minus neutral) was also more negative in PTSD vs. non-PTSD individuals (-7.4 vs. -2.0 [ms], p = .009). The HI and PEP associations with PTSD persisted for adjusted models during trauma and reactivity, respectively. For within-pair analysis of eight PTSD-discordant twin pairs (out of 48 pairs), PTSD was associated with lower HI in neutral, trauma, and reactivity, whereas no association was found between PTSD and PEP. PTSD was associated with reduced HI and PEP, especially with trauma recall stress. This combination of increased sympathetic activation and decreased cardiac contractility combined may be concerning for increased heart failure risk after recurrent trauma re-experiencing in PTSD.


Assuntos
Insuficiência Cardíaca , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Masculino , Idoso , Transtornos de Estresse Pós-Traumáticos/complicações , Impedância Elétrica , Gêmeos , Insuficiência Cardíaca/complicações
9.
IEEE J Sel Top Signal Process ; 16(2): 289-299, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36212235

RESUMO

As we transition away from pandemic-induced isolation and social distancing, there is a need to estimate the risk of exposure in built environments. We propose a novel metric to quantify social distancing and the potential risk of exposure to airborne diseases in an indoor setting, which scales with distance and the number of people present. The risk of exposure metric is designed to incorporate the dynamics of particle movement in an enclosed set of rooms for people at different immunity levels, susceptibility due to age, background infection rates, intrinsic individual risk factors (e.g., comorbidities), mask-wearing levels, the half-life of the virus and ventilation rate in the environment. The model parameters have been selected for COVID-19, although the modeling framework applies to other airborne diseases. The performance of the metric is tested using simulations of a real physical environment, combining models for walking, path length dynamics, and air-conditioning replacement action. We have also created a visualization tool to help identify high-risk areas in the built environment. The resulting software framework is being used to help with planning movement and scheduling in a clinical environment ahead of reopening of the facility, for deciding the maximum time within an environment that is safe for a given number of people, for air replacement settings on air-conditioning and heating systems, and for mask-wearing policies. The framework can also be used for identifying locations where foot traffic might create high-risk zones and for planning timetabled transitions of groups of people between activities in different spaces. Moreover, when coupled with individual-level location tracking (via radio-frequency tagging, for example), the exposure risk metric can be used in real-time to estimate the risk of exposure to the coronavirus or other airborne illnesses, and intervene through air-conditioning action modification, changes in timetabling of group activities, mask-wearing policies, or restricting the number of individuals entering a given room/space. All software are provided online under an open-source license.

10.
PLoS One ; 17(4): e0266828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35395049

RESUMO

BACKGROUND: Schizophrenia is a severe psychiatric disorder that causes significant social and functional impairment. Currently, the diagnosis of schizophrenia is based on information gleaned from the patient's self-report, what the clinician observes directly, and what the clinician gathers from collateral informants, but these elements are prone to subjectivity. Utilizing computer vision to measure facial expressions is a promising approach to adding more objectivity in the evaluation and diagnosis of schizophrenia. METHOD: We conducted a systematic review using PubMed and Google Scholar. Relevant publications published before (including) December 2021 were identified and evaluated for inclusion. The objective was to conduct a systematic review of computer vision for facial behavior analysis in schizophrenia studies, the clinical findings, and the corresponding data processing and machine learning methods. RESULTS: Seventeen studies published between 2007 to 2021 were included, with an increasing trend in the number of publications over time. Only 14 articles used interviews to collect data, of which different combinations of passive to evoked, unstructured to structured interviews were used. Various types of hardware were adopted and different types of visual data were collected. Commercial, open-access, and in-house developed models were used to recognize facial behaviors, where frame-level and subject-level features were extracted. Statistical tests and evaluation metrics varied across studies. The number of subjects ranged from 2-120, with an average of 38. Overall, facial behaviors appear to have a role in estimating diagnosis of schizophrenia and psychotic symptoms. When studies were evaluated with a quality assessment checklist, most had a low reporting quality. CONCLUSION: Despite the rapid development of computer vision techniques, there are relatively few studies that have applied this technology to schizophrenia research. There was considerable variation in the clinical paradigm and analytic techniques used. Further research is needed to identify and develop standardized practices, which will help to promote further advances in the field.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Lista de Checagem , Computadores , Humanos , Projetos de Pesquisa , Esquizofrenia/diagnóstico
11.
IEEE J Biomed Health Inform ; 26(6): 2524-2535, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932490

RESUMO

Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.


Assuntos
Sopros Cardíacos , Ruídos Cardíacos , Algoritmos , Auscultação , Criança , Auscultação Cardíaca/métodos , Sopros Cardíacos/diagnóstico , Humanos
12.
IEEE J Biomed Health Inform ; 25(8): 2866-2876, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33481725

RESUMO

Post-Traumatic Stress Disorder (PTSD) is a psychiatric condition resulting from threatening or horrifying events. We hypothesized that circadian rhythm changes, measured by a wrist-worn research watch are predictive of post-trauma outcomes. APPROACH: 1618 post-trauma patients were enrolled after admission to emergency departments (ED). Three standardized questionnaires were administered at week eight to measure post-trauma outcomes related to PTSD, sleep disturbance, and pain interference with daily life. Pulse activity and movement data were captured from a research watch for eight weeks. Standard and novel movement and cardiovascular metrics that reflect circadian rhythms were derived using this data. These features were used to train different classifiers to predict the three outcomes derived from week-eight surveys. Clinical surveys administered at ED were also used as features in the baseline models. RESULTS: The highest cross-validated performance of research watch-based features was achieved for classifying participants with pain interference by a logistic regression model, with an area under the receiver operating characteristic curve (AUC) of 0.70. The ED survey-based model achieved an AUC of 0.77, and the fusion of research watch and ED survey metrics improved the AUC to 0.79. SIGNIFICANCE: This work represents the first attempt to predict and classify post-trauma symptoms from passive wearable data using machine learning approaches that leverage the circadian desynchrony in a potential PTSD population.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Ritmo Circadiano , Estudos de Coortes , Humanos , Curva ROC , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Punho
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4060-4063, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946764

RESUMO

This paper presents a method for classification of microsleep (MS) from baseline utilizing linear and non-linear features derived from electroencephalography (EEG), which is recorded from five brain regions: frontal, central, parietal, occipital, and temporal. The EEG is acquired from sixteen commercially-rated pilots during the window of circadian low (2:00 am-6:00 am). MS events are annotated using the Driver Monitoring System and further verified using electrooculogram (EOG). A total of 55 features are extracted from EEG. A subset of these features is then selected using a wrapper-based method. The selected features are fed into a linear or quadratic discriminant analysis (LDA or QDA) classifier to automatically differentiate baseline from MS states. The overall classification performance of the best-proposed algorithm is 87.11% in terms of F1 score. This preliminary result highlights the potential of the proposed method towards automatic drowsiness detection which could assist mitigating aviation accidents in the future, pending hardware development to record such EEG signals from the confines of the aviation headset.


Assuntos
Medicina Aeroespacial , Eletroencefalografia , Sono , Sonolência , Algoritmos , Encéfalo , Análise Discriminante , Humanos , Processamento de Sinais Assistido por Computador
14.
Resuscitation ; 122: 6-12, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122647

RESUMO

AIM: An automatic resuscitation rhythm annotator (ARA) would facilitate and enhance retrospective analysis of resuscitation data, contributing to a better understanding of the interplay between therapy and patient response. The objective of this study was to define, implement, and demonstrate an ARA architecture for complete resuscitation episodes, including chest compression pauses (CC-pauses) and chest compression intervals (CC-intervals). METHODS: We analyzed 126.5h of ECG and accelerometer-based chest-compression depth data from 281 out-of-hospital cardiac arrest (OHCA) patients. Data were annotated by expert reviewers into asystole (AS), pulseless electrical activity (PEA), pulse-generating rhythm (PR), ventricular fibrillation (VF), and ventricular tachycardia (VT). Clinical pulse annotations were based on patient-charts and impedance measurements. An ARA was developed for CC-pauses, and was used in combination with a chest compression artefact removal filter during CC-intervals. The performance of the ARA was assessed in terms of the unweighted mean of sensitivities (UMS). RESULTS: The UMS of the ARA were 75.0% during CC-pauses and 52.5% during CC-intervals, 55-points and 32.5-points over a random guess (20% for five categories). Filtering increased the UMS during CC-intervals by 5.2-points. Sensitivities for AS, PEA, PR, VF, and VT were 66.8%, 55.8%, 86.5%, 82.1% and 83.8% during CC-pauses; and 51.1%, 34.1%, 58.7%, 86.4%, and 32.1% during CC-intervals. CONCLUSIONS: A general ARA architecture was defined and demonstrated on a comprehensive OHCA dataset. Results showed that semi-automatic resuscitation rhythm annotation, which may involve further revision/correction by clinicians for quality assurance, is feasible. The performance (UMS) dropped significantly during CC-intervals and sensitivity was lowest for PEA.


Assuntos
Reanimação Cardiopulmonar/métodos , Eletrocardiografia/métodos , Massagem Cardíaca/métodos , Frequência Cardíaca/fisiologia , Parada Cardíaca Extra-Hospitalar/terapia , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Reanimação Cardiopulmonar/classificação , Reanimação Cardiopulmonar/mortalidade , Massagem Cardíaca/mortalidade , Humanos , Parada Cardíaca Extra-Hospitalar/mortalidade , Reprodutibilidade dos Testes , Estudos Retrospectivos
15.
IEEE Trans Biomed Eng ; 64(10): 2411-2418, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28371771

RESUMO

OBJECTIVE: There is a need to monitor the heart rhythm in resuscitation to improve treatment quality. Resuscitation rhythms are categorized into: ventricular tachycardia (VT), ventricular fibrillation (VF), pulseless electrical activity (PEA), asystole (AS), and pulse-generating rhythm (PR). Manual annotation of rhythms is time-consuming and infeasible for large datasets. Our objective was to develop ECG-based algorithms for the retrospective and automatic classification of resuscitation cardiac rhythms. METHODS: The dataset consisted of 1631 3-s ECG segments with clinical rhythm annotations, obtained from 298 out-of-hospital cardiac arrest patients. In total, 47 wavelet- and time-domain-based features were computed from the ECG. Features were selected using a wrapper-based feature selection architecture. Classifiers based on Bayesian decision theory, k-nearest neighbor, k-local hyperplane distance nearest neighbor, artificial neural network (ANN), and ensemble of decision trees were studied. RESULTS: The best results were obtained for ANN classifier with Bayesian regularization backpropagation training algorithm with 14 features, which forms the proposed algorithm. The overall accuracy for the proposed algorithm was 78.5%. The sensitivities (and positive-predictive-values) for AS, PEA, PR, VF, and VT were 88.7% (91.0%), 68.9% (70.4%), 65.9% (69.0%), 86.2% (83.8%), and 78.8% (72.9%), respectively. CONCLUSIONS: The results demonstrate that it is possible to classify resuscitation cardiac rhythms automatically, but the accuracy for the organized rhythms (PEA and PR) is low. SIGNIFICANCE: We have made an important step toward making classification of resuscitation rhythms more efficient in the sense of minimal feedback from human experts.


Assuntos
Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/terapia , Reanimação Cardiopulmonar/métodos , Diagnóstico por Computador/métodos , Eletrocardiografia/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Eletrocardiografia/classificação , Humanos , Redes Neurais de Computação , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Terapia Assistida por Computador/métodos
16.
Resuscitation ; 102: 44-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26891862

RESUMO

AIM: Resuscitation guidelines recommend different treatments depending on the patient's cardiac rhythm. Rhythm interpretation is a key tool to retrospectively evaluate and improve the quality of treatment. Manual rhythm annotation is time consuming and an obstacle for handling large resuscitation datasets efficiently. The objective of this study was to develop a system for automatic rhythm interpretation by using signal processing and machine learning algorithms. METHODS: Data from 302 out of hospital cardiac arrest patients were used. In total 1669 3-second artifact free ECG segments with clinical rhythm annotations were extracted. The proposed algorithms combine 32 features obtained from both wavelet- and time-domain representations of the ECG, followed by a feature selection procedure based on the wrapper method in a nested cross-validation architecture. Linear and quadratic discriminant analyses (LDA and QDA) were used to automatically classify the segments into one of five rhythm types: ventricular tachycardia (VT), ventricular fibrillation (VF), pulseless electrical activity (PEA), asystole (AS), and pulse generating rhythms (PR). RESULTS: The overall accuracy for the best algorithm was 68%. VT, VF, and AS are recognized with sensitivities of 71%, 75%, and 79%, respectively. Sensitivities for PEA and PR were 55% and 56%, respectively, which reflects the difficulty of identifying pulse using only the ECG. CONCLUSIONS: An ECG based automatic rhythm interpreter for resuscitation has been demonstrated. The interpreter handles VT, VF and AS well, while PEA and PR discrimination poses a more difficult problem.


Assuntos
Automação/métodos , Eletrocardiografia/métodos , Frequência Cardíaca/fisiologia , Parada Cardíaca Extra-Hospitalar/fisiopatologia , Ressuscitação , Idoso , Algoritmos , Humanos , Pessoa de Meia-Idade , Parada Cardíaca Extra-Hospitalar/terapia , Reprodutibilidade dos Testes , Estudos Retrospectivos
17.
IEEE Trans Neural Syst Rehabil Eng ; 24(3): 386-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26701865

RESUMO

In this paper, the performance of the phase space representation in interpreting the underlying dynamics of epileptic seizures is investigated and a novel patient-specific seizure detection approach is proposed based on the dynamics of EEG signals. To accomplish this, the trajectories of seizure and nonseizure segments are reconstructed in a high dimensional space using time-delay embedding method. Afterwards, Principal Component Analysis (PCA) was used in order to reduce the dimension of the reconstructed phase spaces. The geometry of the trajectories in the lower dimensions is then characterized using Poincaré section and seven features were extracted from the obtained intersection sequence. Once the features are formed, they are fed into a two-layer classification scheme, comprising the Linear Discriminant Analysis (LDA) and Naive Bayesian classifiers. The performance of the proposed method is then evaluated over the CHB-MIT benchmark database and the proposed approach achieved 88.27% sensitivity and 93.21% specificity on average with 25% training data. Finally, we perform comparative performance evaluations against the state-of-the-art methods in this domain which demonstrate the superiority of the proposed method.


Assuntos
Algoritmos , Epilepsia/diagnóstico , Adolescente , Teorema de Bayes , Criança , Pré-Escolar , Bases de Dados Factuais , Análise Discriminante , Eletroencefalografia/estatística & dados numéricos , Epilepsia/classificação , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Análise de Componente Principal , Processamento de Sinais Assistido por Computador , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA