Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729759

RESUMO

Attentional control over sensory processing has been linked to neural alpha oscillations and related inhibition of cerebral cortex. Despite the wide consensus on the functional relevance of alpha oscillations for attention, precise neural mechanisms of how alpha oscillations shape perception and how this top-down modulation is implemented in cortical networks remain unclear. Here, we tested the hypothesis that alpha oscillations in frontal eye fields (FEF) are causally involved in the top-down regulation of visual processing in humans (male and female). We applied sham-controlled, intermittent transcranial alternating current stimulation (tACS) over bilateral FEF at either 10 Hz (alpha) or 40 Hz (gamma) to manipulate attentional preparation in a visual discrimination task. Under each stimulation condition, we measured psychometric functions for contrast perception and introduced a novel linear mixed modeling approach for statistical control of neurosensory side effects of the electric stimulation. TACS at alpha frequency reduced the slope of the psychometric function, resulting in improved sub-threshold and impaired super-threshold contrast perception. Side effects on the psychometric functions were complex and showed large interindividual variability. Controlling for the impact of side effects on the psychometric parameters by using covariates in the linear mixed model analysis reduced this variability and strengthened the perceptual effect. We propose that alpha tACS over FEF mimicked a state of endogenous attention by strengthening a fronto-occipitoparietal network in the alpha band. We speculate that this network modulation enhanced phasic gating in occipitoparietal cortex leading to increased variability of single-trial psychometric thresholds, measurable as a reduction of psychometric slope.Significance statement Attention is fundamental to the voluntary control of perception and behavior. Yet, precise underlying neural mechanisms remain unclear. Here, we provide evidence for a vital role of frontal alpha oscillations in the regulation of gating of visual information by using intermittent transcranial alternating current stimulation (tACS). We show that modulation of frontal alpha oscillations affected the slope of psychometric functions of visual contrast perception, leading to contrast-dependent improvement and impairment of perception. Our data adds to work on alpha oscillations in spatial attention and studies on the psychometrics of attention. Furthermore, we introduce a novel approach for the statistical control of tACS side effects and thereby contribute to the ongoing debate on outcome variability in studies using transcranial neurostimulation methods.

2.
iScience ; 27(3): 109150, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38420593

RESUMO

The efficacy of transcranial electric stimulation (tES) to effectively modulate neuronal activity depends critically on the spatial orientation of the targeted neuronal population. Therefore, precise estimation of target orientation is of utmost importance. Different beamforming algorithms provide orientation estimates; however, a systematic analysis of their performance is still lacking. For fixed brain locations, EEG and MEG data from sources with randomized orientations were simulated. The orientation was then estimated (1) with an EEG and (2) with a combined EEG-MEG approach. Three commonly used beamformer algorithms were evaluated with respect to their abilities to estimate the correct orientation: Unit-Gain (UG), Unit-Noise-Gain (UNG), and Array-Gain (AG) beamformer. Performance depends on the signal-to-noise ratios for the modalities and on the chosen beamformer. Overall, the UNG and AG beamformers appear as the most reliable. With increasing noise, the UG estimate converges to a vector determined by the leadfield, thus leading to insufficient orientation estimates.

3.
Sci Rep ; 13(1): 21380, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049419

RESUMO

The neural networks subserving smooth pursuit eye movements (SPEM) provide an ideal model for investigating the interaction of sensory processing and motor control during ongoing movements. To better understand core plasticity aspects of sensorimotor processing for SPEM, normative sham, anodal or cathodal transcranial direct current stimulation (tDCS) was applied over visual area V5 and frontal eye fields (FEF) in sixty healthy participants. The identical within-subject paradigm was used to assess SPEM modulations by practice. While no specific tDCS effects were revealed, within- and between-session practice effects indicate plasticity of top-down extraretinal mechanisms that mainly affect SPEM in the absence of visual input and during SPEM initiation. To explore the potential of tDCS effects, individual electric field simulations were computed based on calibrated finite element head models and individual functional localization of V5 and FEF location (using functional MRI) and orientation (using combined EEG/MEG) was conducted. Simulations revealed only limited electric field target intensities induced by the applied normative tDCS montages but indicate the potential efficacy of personalized tDCS for the modulation of SPEM. In sum, results indicate the potential susceptibility of extraretinal SPEM control to targeted external neuromodulation (e.g., personalized tDCS) and intrinsic learning protocols.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Acompanhamento Ocular Uniforme , Lobo Frontal , Imageamento por Ressonância Magnética/métodos
4.
Front Hum Neurosci ; 17: 1216758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694172

RESUMO

Introduction: Source analysis of Electroencephalography (EEG) data requires the computation of the scalp potential induced by current sources in the brain. This so-called EEG forward problem is based on an accurate estimation of the volume conduction effects in the human head, represented by a partial differential equation which can be solved using the finite element method (FEM). FEM offers flexibility when modeling anisotropic tissue conductivities but requires a volumetric discretization, a mesh, of the head domain. Structured hexahedral meshes are easy to create in an automatic fashion, while tetrahedral meshes are better suited to model curved geometries. Tetrahedral meshes, thus, offer better accuracy but are more difficult to create. Methods: We introduce CutFEM for EEG forward simulations to integrate the strengths of hexahedra and tetrahedra. It belongs to the family of unfitted finite element methods, decoupling mesh and geometry representation. Following a description of the method, we will employ CutFEM in both controlled spherical scenarios and the reconstruction of somatosensory-evoked potentials. Results: CutFEM outperforms competing FEM approaches with regard to numerical accuracy, memory consumption, and computational speed while being able to mesh arbitrarily touching compartments. Discussion: CutFEM balances numerical accuracy, computational efficiency, and a smooth approximation of complex geometries that has previously not been available in FEM-based EEG forward modeling.

5.
Biomedicines ; 11(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37626715

RESUMO

Cerebellar transcranial alternating current stimulation (tACS) is an emerging non-invasive technique that induces electric fields to modulate cerebellar function. Although the effect of cortical tACS seems to be state-dependent, the impact of concurrent motor activation and the duration of stimulation on the effects of cerebellar tACS has not yet been examined. In our study, 20 healthy subjects received neuronavigated 50 Hz cerebellar tACS for 40 s or 20 min, each during performance using a motor sequence learning task (MSL) and at rest. We measured the motor evoked potential (MEP) before and at two time points after tACS application to assess corticospinal excitability. Additionally, we investigated the online effect of tACS on MSL. Individual electric field simulations were computed to evaluate the distribution of electric fields, showing a focal electric field in the right cerebellar hemisphere with the highest intensities in lobe VIIb, VIII and IX. Corticospinal excitability was only increased after tACS was applied for 40 s or 20 min at rest, and motor activation during tACS (MSL) cancelled this effect. In addition, performance was better (shorter reaction times) for the learned sequences after 20 min of tACS, indicating more pronounced learning under 20 min of tACS compared to tACS applied only in the first 40 s.

6.
Clin Neurophysiol ; 154: 141-156, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611325

RESUMO

OBJECTIVE: Hearing with a cochlear implant (CI) is difficult in noisy environments, but the use of noise reduction algorithms, specifically ForwardFocus, can improve speech intelligibility. The current event-related potentials (ERP) study examined the electrophysiological correlates of this perceptual improvement. METHODS: Ten bimodal CI users performed a syllable-identification task in auditory and audiovisual conditions, with syllables presented from the front and stationary noise presented from the sides. Brainstorm was used for spatio-temporal evaluation of ERPs. RESULTS: CI users revealed an audiovisual benefit as reflected by shorter response times and greater activation in temporal and occipital regions at P2 latency. However, in auditory and audiovisual conditions, background noise hampered speech processing, leading to longer response times and delayed auditory-cortex-activation at N1 latency. Nevertheless, activating ForwardFocus resulted in shorter response times, reduced listening effort and enhanced superior-frontal-cortex-activation at P2 latency, particularly in audiovisual conditions. CONCLUSIONS: ForwardFocus enhances speech intelligibility in audiovisual speech conditions by potentially allowing the reallocation of attentional resources to relevant auditory speech cues. SIGNIFICANCE: This study shows for CI users that background noise and ForwardFocus differentially affect spatio-temporal cortical response patterns, both in auditory and audiovisual speech conditions.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Potenciais Evocados , Ruído/efeitos adversos
7.
Brain Stimul ; 16(4): 1047-1061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37353071

RESUMO

BACKGROUND: Covert visuo-spatial attention is marked by the anticipatory lateralization of neuronal alpha activity in the posterior parietal cortex. Previous applications of transcranial alternating current stimulation (tACS) at the alpha frequency, however, were inconclusive regarding the causal contribution of oscillatory activity during visuo-spatial attention. OBJECTIVE: Attentional shifts of behavior and electroencephalography (EEG) after-effects were assessed in a cued visuo-spatial attention paradigm. We hypothesized that parietal alpha-tACS shifts attention relative to the ipsilateral visual hemifield. Furthermore, we assumed that modulations of behavior and neurophysiology are related to individual electric field simulations. METHODS: We applied personalized tACS at alpha and gamma frequencies to elucidate the role of oscillatory neuronal activity for visuo-spatial attention. Personalized tACS montages were algorithmically optimized to target individual left and right parietal regions that were defined by an EEG localizer. RESULTS: Behavioral performance in the left hemifield was specifically increased by alpha-tACS compared to gamma-tACS targeting the left parietal cortex. This hemisphere-specific effect was observed despite the symmetry of simulated electric fields. In addition, visual event-related potential (ERP) amplitudes showed a reduced lateralization over posterior sites induced by left alpha-tACS. Neuronal sources of this effect were localized in the left premotor cortex. Interestingly, accuracy modulations induced by left parietal alpha-tACS were directly related to electric field magnitudes in the left premotor cortex. CONCLUSION: Overall, results corroborate the notion that alpha lateralization plays a causal role in covert visuo-spatial attention and indicate an increased susceptibility of parietal and premotor brain regions of the left dorsal attention network to subtle tACS-neuromodulation.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Estimulação Transcraniana por Corrente Contínua/métodos , Lobo Parietal/fisiologia , Eletroencefalografia , Encéfalo , Potenciais Evocados
8.
Neuroimage Clin ; 33: 102942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35033811

RESUMO

In naturalistic situations, sounds are often perceived in conjunction with matching visual impressions. For example, we see and hear the neighbor's dog barking in the garden. Still, there is a good chance that we recognize the neighbor's dog even when we only hear it barking, but do not see it behind the fence. Previous studies with normal-hearing (NH) listeners have shown that the audio-visual presentation of a perceptual object (like an animal) increases the probability to recognize this object later on, even if the repeated presentation of this object occurs in a purely auditory condition. In patients with a cochlear implant (CI), however, the electrical hearing of sounds is impoverished, and the ability to recognize perceptual objects in auditory conditions is significantly limited. It is currently not well understood whether CI users - as NH listeners - show a multisensory facilitation for auditory recognition. The present study used event-related potentials (ERPs) and a continuous recognition paradigm with auditory and audio-visual stimuli to test the prediction that CI users show a benefit from audio-visual perception. Indeed, the congruent audio-visual context resulted in an improved recognition ability of objects in an auditory-only condition, both in the NH listeners and the CI users. The ERPs revealed a group-specific pattern of voltage topographies and correlations between these ERP maps and the auditory recognition ability, indicating a different processing of congruent audio-visual stimuli in CI users when compared to NH listeners. Taken together, our results point to distinct cortical processing of naturalistic audio-visual objects in CI users and NH listeners, which however allows both groups to improve the recognition ability of these objects in a purely auditory context. Our findings are of relevance for future clinical research since audio-visual perception might also improve the auditory rehabilitation after cochlear implantation.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Estimulação Acústica , Idoso , Percepção Auditiva , Potenciais Evocados , Humanos , Reconhecimento Psicológico , Percepção Visual
9.
Brain Stimul ; 15(1): 244-253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34990876

RESUMO

BACKGROUND: Visual phenomena like brightness illusions impressively demonstrate the highly constructive nature of perception. In addition to physical illumination, the subjective experience of brightness is related to temporal neural dynamics in visual cortex. OBJECTIVE: Here, we asked whether biasing the temporal pattern of neural excitability in visual cortex by transcranial alternating current stimulation (tACS) modulates brightness perception of concurrent rhythmic visual stimuli. METHODS: Participants performed a brightness discrimination task of two flickering lights, one of which was targeted by same-frequency electrical stimulation at varying phase shifts. tACS was applied with an occipital and a periorbital active control montage, based on simulations of electrical currents using finite element head models. RESULTS: Experimental results reveal that flicker brightness perception is modulated dependent on the phase shift between sensory and electrical stimulation, solely under occipital tACS. Phase-specific modulatory effects by tACS were dependent on flicker-evoked neural phase stability at the tACS-targeted frequency, recorded prior to electrical stimulation. Further, the optimal timing of tACS application leading to enhanced brightness perception was correlated with the neural phase delay of the cortical flicker response. CONCLUSIONS: Our results corroborate the role of temporally coordinated neural activity in visual cortex for brightness perception of rhythmic visual input in humans. Phase-specific behavioral modulations by tACS emphasize its efficacy to transfer perceptually relevant temporal information to the cortex. These findings provide an important step towards understanding the basis of visual perception and further confirm electrical stimulation as a tool for advancing controlled modulations of neural activity and related behavior.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Córtex Visual , Viés , Humanos , Estimulação Luminosa , Estimulação Transcraniana por Corrente Contínua/métodos , Percepção Visual/fisiologia
10.
Neuroscience ; 375: 149-157, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29432882

RESUMO

Congenital deafness not only affects the development of the auditory cortex, but also the interrelation between the visual and auditory system. For example, congenital deafness leads to visual modulation of the deaf auditory cortex in the form of cross-modal plasticity. Here we asked, whether congenital deafness additionally affects auditory modulation in the visual cortex. We demonstrate that auditory activity, which is normally present in the lateral suprasylvian visual areas in normal hearing cats, can also be elicited by electrical activation of the auditory system with cochlear implants. We then show that in adult congenitally deaf cats auditory activity in this region was reduced when tested with cochlear implant stimulation. However, the change in this area was small and auditory activity was not completely abolished despite years of congenital deafness. The results document that congenital deafness leads not only to changes in the auditory cortex but also affects auditory modulation of visual areas. However, the results further show a persistence of fundamental cortical sensory functional organization despite congenital deafness.


Assuntos
Percepção Auditiva/fisiologia , Surdez/congênito , Surdez/fisiopatologia , Córtex Visual/fisiopatologia , Animais , Córtex Auditivo/fisiopatologia , Gatos , Implantes Cocleares , Surdez/reabilitação , Feminino , Masculino , Plasticidade Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA