Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(4): e4066, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822669

RESUMO

Collagen crosslinking, mediated by lysyl oxidase, is an adaptive mechanism of the cardiac repair process initiated by cardiac fibroblasts postmyocardial injury. However, excessive crosslinking leads to cardiac wall stiffening, which impairs the contractile properties of the left ventricle and leads to heart failure. In this study, we investigated the role of periostin, a matricellular protein, in the regulation of lysyl oxidase in cardiac fibroblasts in response to angiotensin II and TGFß1. Our results indicated that periostin silencing abolished the angiotensin II and TGFß1-mediated upregulation of lysyl oxidase. Furthermore, the attenuation of periostin expression resulted in a notable reduction in the activity of lysyl oxidase. Downstream of periostin, ERK1/2 MAPK signaling was found to be activated, which in turn transcriptionally upregulates the serum response factor to facilitate the enhanced expression of lysyl oxidase. The periostin-lysyl oxidase association was also positively correlated in an in vivo rat model of myocardial infarction. The expression of periostin and lysyl oxidase was upregulated in the collagen-rich fibrotic scar tissue of the left ventricle. Remarkably, echocardiography data showed a reduction in the left ventricular wall movement, ejection fraction, and fractional shortening, indicative of enhanced stiffening of the cardiac wall. These findings shed light on the mechanistic role of periostin in the collagen crosslinking initiated by activated cardiac fibroblasts. Our findings signify periostin as a possible therapeutic target to reduce excessive collagen crosslinking that contributes to the structural remodeling associated with heart failure.


Assuntos
Moléculas de Adesão Celular , Fibroblastos , Proteína-Lisina 6-Oxidase , Ratos Sprague-Dawley , Animais , Proteína-Lisina 6-Oxidase/metabolismo , Fibroblastos/metabolismo , Ratos , Moléculas de Adesão Celular/metabolismo , Masculino , Sistema de Sinalização das MAP Quinases , Miocárdio/metabolismo , Miocárdio/citologia , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Células Cultivadas , Modelos Animais de Doenças , Periostina
2.
Adv Mater ; 30(44): e1803366, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30239044

RESUMO

The transformation from semiconducting to metallic phase, accompanied by a structural transition in 2D transition metal dichalcogenides has attracted the attention of the researchers worldwide. The unconventional structural transformation of fluorinated WS2 (FWS2 ) into the 1T phase is described. The energy difference between the two phases debugs this transition, as fluorination enhances the stability of 1T FWS2 and makes it energetically favorable at higher F concentration. Investigation of the electronic and optical nature of FWS2 is supplemented by possible band structures and bandgap calculations. Magnetic centers in the 1T phase appear in FWS2 possibly due to the introduction of defect sites. A direct consequence of the phase transition and associated increase in interlayer spacing is a change in friction behavior. Friction force microscopy is used to determine this effect of functionalization accompanied phase transformation.

3.
Nanoscale ; 10(20): 9516-9524, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29737994

RESUMO

Transition metal dichalcogenides (TMDs) exhibit unique properties and show potential for promising applications in energy conversion. Mono/few-layered TMDs have been widely explored as active electrocatalysts for the hydrogen evolution reaction (HER). A controlled synthesis of TMD nanostructures with unique structural and electronic properties, leading to highly active sites or higher conductivity, is essential to achieve enhanced HER activity. Here, we demonstrate a new approach to controllably synthesize highly catalytically active oxygen-incorporated 1T and 2H WS2 nanoclusters from oxygen deficient WO3 nanorods, following chemical exfoliation and ultrasonication processes, respectively. The as-synthesized 1T nanoclusters, with unique properties of tailored edge sites, and enhanced conductivity resulting from the metallic 1T phase and oxygen incorporation, have been identified as highly active and promising electrocatalysts for the HER, with a very low Tafel slope of 47 mV per decade and a low onset overpotential of 88 mV, along with exceptionally high exchange current density and very good stability. The study could be extended to other TMD materials for potential applications in energy conversion and storage.

4.
Nat Nanotechnol ; 13(7): 602-609, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29736036

RESUMO

With the advent of graphene, the most studied of all two-dimensional materials, many inorganic analogues have been synthesized and are being exploited for novel applications. Several approaches have been used to obtain large-grain, high-quality materials. Naturally occurring ores, for example, are the best precursors for obtaining highly ordered and large-grain atomic layers by exfoliation. Here, we demonstrate a new two-dimensional material 'hematene' obtained from natural iron ore hematite (α-Fe2O3), which is isolated by means of liquid exfoliation. The two-dimensional morphology of hematene is confirmed by transmission electron microscopy. Magnetic measurements together with density functional theory calculations confirm the ferromagnetic order in hematene while its parent form exhibits antiferromagnetic order. When loaded on titania nanotube arrays, hematene exhibits enhanced visible light photocatalytic activity. Our study indicates that photogenerated electrons can be transferred from hematene to titania despite a band alignment unfavourable for charge transfer.

5.
Sci Adv ; 3(7): e1700842, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28740867

RESUMO

We report the fluorination of electrically insulating hexagonal boron nitride (h-BN) and the subsequent modification of its electronic band structure to a wide bandgap semiconductor via introduction of defect levels. The electrophilic nature of fluorine causes changes in the charge distribution around neighboring nitrogen atoms in h-BN, leading to room temperature weak ferromagnetism. The observations are further supported by theoretical calculations considering various possible configurations of fluorinated h-BN structure and their energy states. This unconventional magnetic semiconductor material could spur studies of stable two-dimensional magnetic semiconductors. Although the high thermal and chemical stability of h-BN have found a variety of uses, this chemical functionalization approach expands its functionality to electronic and magnetic devices.

6.
Adv Mater ; 28(40): 8959-8967, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27562359

RESUMO

3D scaffolds of graphene, possessing ultra-low density, macroporous microstructure, and high yield strength and stiffness can be developed by a novel plasma welding process. The bonding between adjacent graphene sheets is investigated by molecular dynamics simulations. The high degree of biocompatibility along with high porosity and good mechanical properties makes graphene an ideal material for use as body implants.


Assuntos
Soldagem , Grafite , Porosidade , Próteses e Implantes , Temperatura
7.
Sci Adv ; 2(7): e1600319, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27453942

RESUMO

The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials.


Assuntos
Materiais Biocompatíveis/química , Ligas Dentárias/química , Cristalografia por Raios X , Dureza , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA