Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Biol ; 33(2): 149-54, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23033672

RESUMO

This study investigated how nurseries could benefit by inducing "short" photoperiods as low as 4 hr to produce "better" seedlings characterized by more vigorous roots; a substantial feature to overcome transplanting stress. The carryover effect of the photoperiod was also investigated on seedlings that grew for 30 days more underthe consistent 14 hr photoperiod. Seedlings of Pinus brutia were subjected to 4, 6, 8 and 14 hr photoperiod for 3 week. Fifteen seedlings were used to evaluate the leaf area, the root and shoot dry weight and their ratio. Six and sixteen seedlings were used to evaluate the shoot electrolyte leakage and the root growth potential, respectively. Based on the results, the 6 and 8 hr photoperiod indicated greater root allocation (4.8 and 4.9 mg, respectively) and chlorophyll content (3.7 and 4.4, respectively). They also indicated greater leaf area values (3.3 and 3.5 cm2, respectively) along with the 14 hr (3.4 cm2). The photoperiod effect continued even after seedlings were subjected at consistent photoperiod. Overall, "short" photoperiods could provide "better" P. brutia seedlings to accommodate immediate massive reforestation and afforestation needs.


Assuntos
Fotoperíodo , Pinus/crescimento & desenvolvimento , Pinus/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Clorofila/metabolismo , Luz , Pinus/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/metabolismo , Fatores de Tempo
2.
Plant Biol (Stuttg) ; 8(1): 52-63, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16435269

RESUMO

To assess the physiological performance of drought-sensitive European beech ( Fagus sylvatica L.) under the dry Mediterranean climate prevailing at its southeastern distribution limit in Europe, we analyzed seasonal changes in carbon, nitrogen and water balance of naturally grown adult trees. We determined the foliar C and N contents, delta13C and delta18O signatures, total soluble non-protein nitrogen compounds (TSNN) in xylem, leaves, and phloem, as well as leaf water potential and photosynthetic quantum yield in northern Greece during 2003. Tissue sampling was performed in May, July, and September, while field measurements were conducted regularly. Climatic conditions for the 2003 growing season fall within the typical range of the studied area. The N- and C-related parameters displayed distinct seasonal courses. TSNN was highest in May in all tissues, and asparagine (Asn) was then the most abundant compound. Thereafter, TSNN decreased significantly in all tissues and both its concentration and composition remained constant in July and September. In both months, glutamate (Glu) prevailed in leaves, gamma-aminobutyric acid (GABA) in phloem exudates from twigs and trunks, and arginine (Arg) in the xylem sap, where loading with amino acids was rather low during that period, amounting to only 0.8 micromol N ml-1 in September. Highest total foliar N and C contents were detected in May, and the elevated abundance of nutrients as well as an increased foliar delta13C signature at the beginning of the growing season is attributed to remobilization processes. The signatures of delta18O, quantum yield and leaf water potentials varied only slightly throughout the growing season. Although summer precipitation at the study site was considerably lower compared to what is usual for typical central European beech forests, no intensive drought responses of the physiological apparatus were detected in the studied beech trees. This suggests efficient internal regulation mechanisms, constantly ensuring a favourable physiological status under the relatively dry Mediterranean climate.


Assuntos
Fagus/fisiologia , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Clima , Ecossistema , Europa (Continente) , Nitrogênio/metabolismo , Pressão Osmótica , Fotossíntese , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Estações do Ano , Árvores/fisiologia , Água/metabolismo
3.
Tree Physiol ; 20(16): 1065-75, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11269958

RESUMO

Effects of water stress on phenology, growth, stomatal activity and water status were assessed from April to November 1996 in 2-year-old seedlings of Quercus frainetto Ten. (Quercus conferta Kit.), Quercus pubescens Willd., Quercus macrolepis Kotschy (Quercus aegilops auct.) and Quercus ilex L. growing in containers in northern Greece. All four species developed more than 50% of their total leaf area before the beginning of June--an adaptation to arid climates. Well-irrigated plants tended to develop greater individual leaf area, number of leaves per plant, total plant leaf area, height and root:shoot ratios than water-stressed plants, but the difference between treatments was not significant for any parameter in any species. Quercus macrolepis appeared to be the most drought-tolerant of the four species. It maintained the highest number of leaves of the smallest size and increased the proportion of fine roots during drought. In all species, drought caused significant decreases in stomatal conductance and predawn and midday water potentials from mid-July until the end of August, when the lowest soil water content and highest mean daily air temperatures and midday leaf temperatures occurred; however, the responses were species-specific. Among the four species, Quercus macrolepis sustained the highest stomatal conductance despite very low water potentials, thus overcoming drought by means of desiccation tolerance. Quercus ilex decreased stomatal conductance even before severe water stress occurred, thereby avoiding desication during drought. Quercus pubescens had the highest water potential despite a high stomatal conductance, indicating that its leaf water status was independent of stomatal activity. Quercus frainetto was the least drought-resistant of the four species. During drought it developed very low water potentials despite markedly reduced stomatal aperture.


Assuntos
Árvores/fisiologia , Grécia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Chuva , Estações do Ano , Solo , Especificidade da Espécie , Árvores/crescimento & desenvolvimento , Água/fisiologia
4.
Tree Physiol ; 17(7): 485-8, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14759842

RESUMO

Net photosynthetic rates of developing foliage and one-year-old foliage of loblolly pine (Pinus taeda L.) were measured under field conditions. In the subsequent year, net photosynthesis and dark respiration rates of current-year and one-year-old foliage were measured under controlled environmental conditions. Loblolly pine foliage grows slowly, reaching its final size 3.5 to 4 months after bud burst. Positive rates of net photosynthesis were recorded when the foliage was 13 and 18% of final length, in the controlled-environment and field study, respectively. However, because of high rates of dark respiration during the initial growth period, a positive diurnal carbon balance did not occur until foliage was about a third of final length (40 days after bud burst). Two months after bud burst, when foliage was about 55% of final length, its photosynthetic capacity exceeded that of one-year-old foliage. The highest rates of net photosynthesis were achieved when foliage was more than 90% fully expanded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA