Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Blood Adv ; 8(4): 916-926, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38113461

RESUMO

ABSTRACT: In vivo hematopoietic stem cell (HSC) gene therapy is an emerging and promising area of focus in the gene therapy field. Humanized mouse models are frequently used to evaluate novel HSC gene therapy approaches. Here, we comprehensively evaluated 2 mouse strains, NSG and NBSGW. We studied human HSC engraftment in the bone marrow (BM), mobilization of BM-engrafted HSCs into circulation, in vivo transduction using vesicular stomatitis virus glycoprotein-pseudotyped lentiviral vectors (VSV-G LVs), and the expression levels of surface receptors needed for transduction of viral vectors. Our findings reveal that the NBSGW strain exhibits superior engraftment of human long-term HSCs compared with the NSG strain. However, neither model resulted in a significant increase in circulating human HSCs after mobilization. We show that time after humanization as well as human chimerism levels and platelet counts in the peripheral blood can be used as surrogates for human HSC engraftment in the BM. Furthermore, we observed low expression of the low-density lipoprotein receptor, a requirement for VSV-G LV transduction, in the human HSCs present in the murine BM. Our comprehensive characterization of humanized mouse models highlights the necessity of proper validation of the model and methods to study in vivo HSC gene therapy strategies.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Camundongos , Animais , Humanos , Células-Tronco Hematopoéticas/metabolismo , Terapia Genética/métodos , Lentivirus/genética
2.
Med ; 4(11): 749-751, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37951207

RESUMO

While new immunotherapies have revolutionized the field of oncology, they have been limited by their inability to distinguish between cancerous cells and healthy HSPCs. Work by Casirati et al.1 and Wellhausen et al.2 in epitope editing antigens commonly expressed on AML and HSPCs has unlocked several new targets for immunotherapies.


Assuntos
Imunoterapia Adotiva , Neoplasias , Imunoterapia Adotiva/efeitos adversos , Neoplasias/terapia
3.
Mol Ther Methods Clin Dev ; 31: 101121, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37868209

RESUMO

Current immunotherapeutic targets are often shared between neoplastic and normal hematopoietic stem and progenitor cells (HSPCs), leading to unwanted on-target, off-tumor toxicities. Deletion or modification of such targets to protect normal HSPCs is, therefore, of great interest. Although HSPC modifications commonly aim to mimic naturally occurring phenotypes, the long-term persistence and safety of gene-edited cells need to be evaluated. Here, we deleted the V-set domain of CD33, the immune-dominant domain targeted by most anti-CD33 antibodies used to treat CD33-positive malignancies, including acute myeloid leukemia, in the HSPCs of two rhesus macaques, performed autologous transplantation after myeloablative conditioning, and followed the animals for up to 3 years. CD33-edited HSPCs engrafted without any delay in recovery of neutrophils, the primary cell type expressing CD33. No impact on the blood composition, reconstitution of the bone marrow stem cell compartment, or myeloid differentiation potential was observed. Up to 20% long-term gene editing in HSPCs and blood cell lineages was seen with robust loss of CD33 detection on myeloid lineages. In conclusion, deletion of the V-set domain of CD33 on HSPCs, progenitors, and myeloid lineages did not show any adverse effects on their homing and engraftment potential or the differentiation and functionality of myeloid progenitors and lineages.

4.
Mol Ther Methods Clin Dev ; 30: 276-287, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37575091

RESUMO

Hematopoietic stem cell gene therapy has been successfully used for a number of genetic diseases and is also being explored for HIV. However, toxicity of the conditioning regimens has been a major concern. Here we compared current conditioning approaches in a clinically relevant nonhuman primate model. We first customized various aspects of the therapeutic approach, including mobilization and cell collection protocols, conditioning regimens that support engraftment with minimal collateral damage, and cell manufacturing and infusing schema that reflect and build on current clinical approaches. Through a series of iterative in vivo experiments in two macaque species, we show that busulfan conditioning significantly spares lymphocytes and maintains a superior immune response to mucosal challenge with simian/human immunodeficiency virus, compared to total body irradiation and melphalan regimens. Comparative mobilization experiments demonstrate higher cell yield relative to our historical standard, primed bone marrow and engraftment of CRISPR-edited hematopoietic stem and progenitor cells (HSPCs) after busulfan conditioning. Our findings establish a detailed workflow for preclinical HSPC gene therapy studies in the nonhuman primate model, which in turn will support testing of novel conditioning regimens and more advanced HSPC gene editing techniques tailored to any disease of interest.

5.
Mol Ther ; 31(10): 2901-2913, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37550965

RESUMO

Hematopoietic stem cell (HSC) gene therapy is currently performed on CD34+ hematopoietic stem and progenitor cells containing less than 1% true HSCs and requiring a highly specialized infrastructure for cell manufacturing and transplantation. We have previously identified the CD34+CD90+ subset to be exclusively responsible for short- and long-term engraftment. However, purification and enrichment of this subset is laborious and expensive. HSC-specific delivery agents for the direct modification of rare HSCs are currently lacking. Here, we developed novel targeted viral vectors to specifically transduce CD90-expressing HSCs. Anti-CD90 single chain variable fragments (scFvs) were engineered onto measles- and VSV-G-pseudotyped lentiviral vectors that were knocked out for native targeting. We further developed a custom hydrodynamic titration methodology to assess the loading of surface-engineered capsids, measure antigen recognition of the scFv, and predict the performance on cells. Engineered vectors formed with minimal impairment in the functional titer, maintained their ability to fuse with the target cells, and showed highly specific recognition of CD90 on cells ex vivo. Most important, targeted vectors selectively transduced human HSCs with secondary colony-forming potential. Our novel HSC-targeted viral vectors have the potential to significantly enhance the feasibility of ex vivo gene therapy and pave the way for future in vivo applications.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Humanos , Antígenos CD34/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Células-Tronco Hematopoéticas
6.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865281

RESUMO

On-target toxicity to normal cells is a major safety concern with targeted immune and gene therapies. Here, we developed a base editing (BE) approach exploiting a naturally occurring CD33 single nucleotide polymorphism leading to removal of full-length CD33 surface expression on edited cells. CD33 editing in human and nonhuman primate (NHP) hematopoietic stem and progenitor cells (HSPCs) protects from CD33-targeted therapeutics without affecting normal hematopoiesis in vivo , thus demonstrating potential for novel immunotherapies with reduced off-leukemia toxicity. For broader applications to gene therapies, we demonstrated highly efficient (>70%) multiplexed adenine base editing of the CD33 and gamma globin genes, resulting in long-term persistence of dual gene-edited cells with HbF reactivation in NHPs. In vitro , dual gene-edited cells could be enriched via treatment with the CD33 antibody-drug conjugate, gemtuzumab ozogamicin (GO). Together, our results highlight the potential of adenine base editors for improved immune and gene therapies.

7.
8.
Blood ; 142(1): 33-43, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-36821766

RESUMO

Hematopoietic stem cells (HSCs) are assumed to be rare, infrequently dividing, long-lived cells not involved in immediate recovery after transplantation. Here, we performed unprecedented high-density clonal tracking in nonhuman primates and found long-term persisting HSC clones to actively contribute during early neutrophil recovery, and to be the main source of blood production as early as 50 days after transplantation. Most surprisingly, we observed a rapid decline in the number of unique HSC clones, while persisting HSCs expanded, undergoing symmetric divisions to create identical siblings and formed clonal pools ex vivo as well as in vivo. In contrast to the currently assumed model of hematopoietic reconstitution, we provide evidence for contribution of HSCs in short-term recovery as well as symmetric expansion of individual clones into pools. These findings provide novel insights into HSC biology, informing the design of HSC transplantation and gene therapy studies.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais , Células Clonais , Hematopoese
10.
Methods Mol Biol ; 2567: 87-98, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255696

RESUMO

The preclinical development of hematopoietic stem cell (HSC) gene therapy/editing and transplantation protocols is frequently performed in large animal models such as nonhuman primates (NHPs). Similarity in physiology, size, and life expectation as well as cross-reactivity of most reagents and medications allows for the development of treatment strategies with rapid translation to clinical applications. Especially after the adverse events of HSC gene therapy observed in the late 1990s, the ability to perform autologous transplants and follow the animals long-term make the NHP a very attractive model to test the efficiency, feasibility, and safety of new HSC-mediated gene-transfer/editing and transplantation approaches.This protocol describes a method to phenotypically characterize functionally distinct NHP HSPC subsets within specimens or stem cell products from three different NHP species. Procedures are based on the flow-cytometric assessment of cell surface markers that are cross-reactive in between human and NHP to allow for immediate clinical translation. This protocol has been successfully used for the quality control of enriched, cultured, and gene-modified NHP CD34+ hematopoietic stem and progenitor cells (HSPCs) as well as sort-purified CD34 subsets for transplantation in the pig-tailed, cynomolgus, and rhesus macaque. It further allows the longitudinal assessment of primary specimens taken during the long-term follow-up post-transplantation in order to monitor homing, engraftment, and reconstitution of the bone marrow stem cell compartment.


Assuntos
Células-Tronco Hematopoéticas , Animais , Antígenos CD34/metabolismo , Edição de Genes , Macaca mulatta
12.
Mol Ther ; 30(6): 2186-2198, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35240320

RESUMO

Clinical applications of hematopoietic stem cell (HSC) gene editing are limited due to their complex and expensive logistics. HSC editing is commonly performed ex vivo using electroporation and requires good manufacturing practice (GMP) facilities, similar to bone marrow transplant centers. In vivo gene editing could overcome this limitation; however, electroporation is unsuitable for systemic in vivo applications to HSCs. Here we evaluated polymer-based nanoparticles (NPs), which could also be used for in vivo administration, for the delivery of mRNA and nucleases to human granulocyte colony-stimulating factor (GCSF)-mobilized CD34+ cells. NP-mediated ex vivo delivery showed no toxicity, and the efficiency was directly correlated with the charge of the NPs. In a side-by-side comparison with electroporation, NP-mediated gene editing allowed for a 3-fold reduction in the amount of reagents, with similar efficiency. Furthermore, we observed enhanced engraftment potential of human HSCs in the NSG mouse xenograft model using NPs. Finally, mRNA- and nuclease-loaded NPs were successfully lyophilized for storage, maintaining their transfection potential after rehydration. In conclusion, we show that polymer-based NP delivery of mRNA and nucleases has the potential to overcome current limitations of HSC gene editing. The predictable transfection efficiency, low toxicity, and ability to lyophilize NPs will greatly enhance the portability and provide a highly promising platform for HSC gene therapy.


Assuntos
Edição de Genes , Células-Tronco Hematopoéticas , Nanopartículas , Animais , Antígenos CD34 , Transplante de Células-Tronco Hematopoéticas , Humanos , Indicadores e Reagentes , Camundongos , Polímeros , RNA Mensageiro
13.
Trends Mol Med ; 28(3): 171-172, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35086771

RESUMO

Gene editing allows the precise modification of cells to correct genetic defects or enhance immunotherapies. A limitation is the delivery of this technology to specific cells or organs. Recently, Banskota et al. reported the use of virus-like particles (VLPs) loaded with gene-editing agents for gene therapy delivery directly inside the body.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Humanos
14.
Mol Ther Methods Clin Dev ; 24: 30-39, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34977270

RESUMO

Over the past decade, numerous gene-editing platforms which alter host DNA in a highly specific and targeted fashion have been described. Two notable examples are zinc finger nucleases (ZFNs), the first gene-editing platform to be tested in clinical trials, and more recently, CRISPR/Cas9. Although CRISPR/Cas9 approaches have become arguably the most popular platform in the field, the therapeutic advantages and disadvantages of each strategy are only beginning to emerge. We have established a nonhuman primate (NHP) model that serves as a strong predictor of successful gene therapy and gene-editing approaches in humans; our recent work shows that ZFN-edited hematopoietic stem and progenitor cells (HSPCs) engraft at lower levels than CRISPR/Cas9-edited cells. Here, we investigate the mechanisms underlying this difference. We show that optimized culture conditions, including defined serum-free media, augment engraftment of gene-edited NHP HSPCs in a mouse xenograft model. Furthermore, we identify intracellular RNases as major barriers for mRNA-encoded nucleases relative to preformed enzymatically active CRISPR/Cas9 ribonucleoprotein (RNP) complexes. We conclude that CRISPR/Cas9 RNP gene editing is more stable and efficient than ZFN mRNA-based delivery and identify co-delivered RNase inhibitors as a strategy to enhance the expression of gene-editing proteins from mRNA intermediates.

15.
Mol Ther Methods Clin Dev ; 24: 127-141, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35036470

RESUMO

We tested a new in vivo hematopoietic stem cell (HSC) transduction/selection approach in rhesus macaques using HSC-tropic, integrating, helper-dependent adenovirus vectors (HDAd5/35++) designed for the expression of human γ-globin in red blood cells (RBCs) to treat hemoglobinopathies. We show that HDAd5/35++ vectors preferentially transduce HSCs in vivo after intravenous injection into granulocyte colony-stimulating factor (G-CSF)/AMD3100-mobilized animals and that transduced cells return to the bone marrow and spleen. The approach was well tolerated, and the activation of proinflammatory cytokines that are usually associated with intravenous adenovirus vector injection was successfully blunted by pre-treatment with dexamethasone in combination with interleukin (IL)-1 and IL-6 receptor blockers. Using our MGMTP140K-based in vivo selection approach, γ-globin+ RBCs increased in all animals with levels up to 90%. After selection, the percentage of γ-globin+ RBCs declined, most likely due to an immune response against human transgene products. Our biodistribution data indicate that γ-globin+ RBCs in the periphery were mostly derived from mobilized HSCs that homed to the spleen. Integration site analysis revealed a polyclonal pattern and no genotoxicity related to transgene integrations. This is the first proof-of-concept study in nonhuman primates to show that in vivo HSC gene therapy could be feasible in humans without the need for high-dose chemotherapy conditioning and HSC transplantation.

16.
Mol Ther Methods Clin Dev ; 23: 507-523, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34853798

RESUMO

Sickle cell disease and ß-thalassemia are common monogenic disorders that cause significant morbidity and mortality globally. The only curative treatment currently is allogeneic hematopoietic stem cell transplantation, which is unavailable to many patients due to a lack of matched donors and carries risks including graft-versus-host disease. Genome editing therapies targeting either the BCL11A erythroid enhancer or the HBG promoter are already demonstrating success in reinducing fetal hemoglobin. However, where a single locus is targeted, reliably achieving levels high enough to deliver an effective cure remains a challenge. We investigated the application of a CRISPR/Cas9 multiplex genome editing approach, in which both the BCL11A erythroid enhancer and HBG promoter are disrupted within human hematopoietic stem cells. We demonstrate superior fetal hemoglobin reinduction with this dual-editing approach without compromising engraftment or lineage differentiation potential of edited cells post-xenotransplantation. However, multiplex editing consistently resulted in the generation of chromosomal rearrangement events that persisted in vivo following transplantation into immunodeficient mice. The risk of oncogenic events resulting from such translocations therefore currently prohibits its clinical translation, but it is anticipated that, in the future, alternative editing platforms will help alleviate this risk.

17.
Hum Gene Ther ; 32(1-2): 113-127, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32741228

RESUMO

Hematopoietic stem and progenitor cell (HSPC)-based ex vivo gene therapy has demonstrated clinical success for X-linked severe combined immunodeficiency (SCID-X1) patients who lack a suitable donor for HSPC transplantation. Nevertheless, this form of treatment is associated with an increased risk of infectious disease complications and genotoxicity mainly due to the conditioning regimen. In addition, ex vivo gene therapy approaches require sophisticated facilities to manufacture gene-modified cells and to care for the patients after chemotherapy. Considering these impediments, we have developed an in vivo gene therapy approach to treat canine SCID-X1 after HSPC mobilization and systemic delivery of the therapeutic vector. Here, we investigated the use of the cocal envelope to pseudotype a lentiviral (LV) vector expressing a functional gammaC gene. The cocal envelope is resistant to serum inactivation compared with the commonly used vesicular stomatitis virus envelope glycoprotein (VSV-G) envelope and thus well suited for systemic delivery. Two SCID-X1 neonatal canines treated with this approach achieved long-term therapeutic immune reconstitution with no prior conditioning. Therapeutic levels of gene-corrected CD3+ T cells were demonstrated for at least 16 months, and all other correlates of T cell functionality were within normal range. Retroviral integration-site analysis demonstrated polyclonal T cell reconstitution. Comparative analysis of integration profiles of foamy viral (FV) vector and cocal LV vector after in vivo gene therapy found distinct integration-site patterns. These data demonstrate that clinically relevant and durable correction of canine SCID-X1 can be achieved with in vivo delivery of cocal LV. Since manufacturing of cocal LV is similar to VSV-G LV, this approach is easily translatable to a clinical setting, thus providing for a highly portable and accessible gene therapy platform for SCID-X1.


Assuntos
Spumavirus , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Animais , Cães , Terapia Genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas , Humanos , Lentivirus/genética , Transdução Genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia
18.
Exp Hematol ; 93: 52-60.e1, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276046

RESUMO

AMD3100 (plerixafor) is a vital component of many clinical and preclinical transplant protocols, facilitating harvest of hematopoietic stem and progenitor cells through mobilization into the peripheral blood circulation. Repeat mobilization with AMD3100 is also necessary for many patients with suboptimal first stem cell collection or those requiring repeat transplantation. In this study we investigated the mobilization efficacy of repeated AMD3100 dosages in the nonhuman primate and humanized mouse models. In nonhuman primates, we observed effective mobilization after the first AMD3100 administration but a significantly poorer response in CD34+ and hematopoietic stem cell-enriched CD90+ cells with subsequent doses of the drug. A similar loss of efficacy with repeated administration was noted in immunodeficient mice engrafted with human CD34+ cells, in whom the total human white cell population, and particularly human hematopoietic stem and progenitor cells, mobilized significantly less effectively following a second AMD3100 administration when compared with the first dose. Together, our results are expected to inform future mobilization protocols for the purposes of peripheral blood hematopoietic stem cell extraction or for applications in which hematopoietic stem cells must be made accessible for in vivo-delivered gene targeting agents.


Assuntos
Benzilaminas/farmacologia , Ciclamos/farmacologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Animais , Antígenos CD34/análise , Benzilaminas/administração & dosagem , Ciclamos/administração & dosagem , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Antígenos Thy-1/análise
19.
Transplant Direct ; 6(8): e579, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33134503

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a common treatment for patients suffering from different hematological disorders. Allo-HCT in combination with hematopoietic stem cell (HSC) gene therapy is considered a promising treatment option for millions of patients with HIV+ and acute myeloid leukemia. Most currently available HSC gene therapy approaches target CD34-enriched cell fractions, a heterogeneous mix of mostly progenitor cells and only very few HSCs with long-term multilineage engraftment potential. As a consequence, gene therapy approaches are currently limited in their HSC targeting efficiency, very expensive consuming huge quantities of modifying reagents, and can lead to unwanted side effects in nontarget cells. We have previously shown that purified CD34+CD90+CD45RA- cells are enriched for multipotent HSCs with long-term multilineage engraftment potential, which can reconstitute the entire hematopoietic system in an autologous nonhuman primate transplant model. Here, we tested the feasibility of transplantation with purified CD34+CD90+CD45RA- cells in the allogeneic setting in a nonhuman primate model. METHODS: To evaluate the feasibility of this approach, CD34+CD90+CD45RA- cells from 2 fully major histocompatibility complex-matched, full sibling rhesus macaques were sort-purified, quality controlled, and transplanted. Engraftment and donor chimerism were evaluated in the peripheral blood and bone marrow of both animals. RESULTS: Despite limited survival due to infectious complications, we show that the large-scale sort-purification and transplantation of CD34+CD90+CD45RA- cells is technically feasible and leads to rapid engraftment of cells in bone marrow in the allogeneic setting and absence of cotransferred T cells. CONCLUSIONS: We show that purification of an HSC-enriched CD34+ subset can serve as a potential stem cell source for allo-HCTs. Most importantly, the combination of allo-HCT and HSC gene therapy has the potential to treat a wide array of hematologic and nonhematologic disorders.

20.
Mol Ther Methods Clin Dev ; 18: 679-691, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32802914

RESUMO

Hematopoietic stem cell (HSC) gene therapy has the potential to cure many genetic, malignant, and infectious diseases. We have shown in a nonhuman primate gene therapy and transplantation model that the CD34+CD90+ cell fraction was exclusively responsible for multilineage engraftment and hematopoietic reconstitution. In this study, we show the translational potential of this HSC-enriched CD34 subset for lentivirus-mediated gene therapy. Alternative HSC enrichment strategies include the purification of CD133+ cells or CD38low/- subsets of CD34+ cells from human blood products. We directly compared these strategies to the isolation of CD90+ cells using a good manufacturing practice (GMP) grade flow-sorting protocol with clinical applicability. We show that CD90+ cell selection results in about 30-fold fewer target cells in comparison to CD133+ or CD38low/- CD34+ hematopoietic stem and progenitor cell (HSPC) subsets without compromising the engraftment potential in vivo. Single-cell RNA sequencing confirmed nearly complete depletion of lineage-committed progenitor cells in CD90+ fractions compared to alternative selections. Importantly, lentiviral transduction efficiency in purified CD90+ cells resulted in up to 3-fold higher levels of engrafted gene-modified blood cells. These studies should have important implications for the manufacturing of patient-specific HSC gene therapy and gene-engineered cell products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA