Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Endourol ; 35(6): 903-907, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-27981862

RESUMO

Introduction: A novel single-use flexible ureteroscope promises the optical characteristics and maneuverability of a reusable fourth-generation flexible ureteroscope. In this study, the LithoVue Single-Use Digital flexible ureteroscope was directly compared with contemporary reusable flexible ureteroscopes, with regard to optics, deflection, and irrigation flow. Methods: Three flexible ureteroscopes such as the LithoVue (Single Use; Boston Scientific), Flex-Xc (Karl Storz, Germany), and Cobra (Richard Wolf, Germany) were assessed in vitro for image resolution, distortion, color representation, grayscale imaging, field of view, and depth of field. Ureteroscope deflection was tested with an empty channel followed by placement of a 200 µm laser fiber and a 1.9F wire basket, a 2.0F nanoelectric pulse lithotripsy (NPL) probe, and a 2.4F NPL probe. Ureteroscope irrigation flow was measured using normal saline at 100 cm, with an empty channel followed by a 200 µm laser fiber, a 1.9F wire basket and a 2.0F NPL probe. Results: The LithoVue showed the largest field of view, with excellent resolution, image distortion, and depth of field. No substantial difference was demonstrated in color reproducibility or in the discernment of grayscales between ureteroscopes. The LithoVue maintained full deflection ability with all instruments in the working channel, although the Flex-Xc and Cobra ureteroscopes showed loss of deflection ranging from 2° to 27°, depending on the instrument placed. With an empty channel, the LithoVue showed an absolute flow rate similar to the Flex-Xc ureteroscope (p = 0.003). It maintained better flow with instruments in the channel than the Flex-Xc ureteroscope. The Cobra ureteroscope has a separate 3.3F instrument channel, keeping flow rates the same with instrument insertion. Conclusion: The LithoVue Single-Use Digital ureteroscope has comparable optical capabilities, deflection, and flow, making it a viable alternative to standard reusable fourth-generation flexible digital and fiberoptic ureteroscopes.


Assuntos
Ureteroscópios , Ureteroscopia , Desenho de Equipamento , Alemanha , Reprodutibilidade dos Testes
2.
J Endourol ; 33(1): 22-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29943662

RESUMO

INTRODUCTION: A ball-tip holmium laser fiber (TracTip; Boston Scientific) has been developed to theoretically reduce damaging friction forces generated within a ureteroscope working channel. We compared the insertional forces and damage with a ureteroscope inner lining when inserting standard flat-tip and ball-tip laser fibers. MATERIALS AND METHODS: A standard ureteroscope channel liner was placed in a 3D-printed plastic mold. Molds were created at four angles of deflection (30°, 45°, 90°, and 180°) with a 1 cm radius of curvature. New 200 µm ball-tip (TracTip; Boston Scientific) and 200 µm flat-tip (Flexiva; Boston Scientific) laser fibers were advanced through the liner using a stage controller. A strain gauge was used to measure force required for insertion. Each fiber was passed 600 times at each angle of deflection. The ureteroscope liner was changed every 150 passes. Leak testing was performed every 50 passes or when the insertional force increased significantly to assess damage to the liner. RESULTS: At all deflection angles, the average insertional force was significantly lower with the ball-tip laser fibers compared with flat-tip laser fibers (p < 0.001). All trials with the ball-tip lasers were completed at each angle without any leaks. Two of four trials using flat-tip fibers at 45° deflection caused liner leaks (at 91 and 114 passes). At 90° deflection, all flat-tip trials caused liner leaks on first pass. The 180° trials could not physically be completed with the flat-tip laser fiber. Within the flat- and ball-tip groups, an increasing amount of force was needed to pass the fiber as the degree of deflection increased (p < 0.001). CONCLUSIONS: The ball-tip holmium laser fiber can be safely passed through a deflected ureteroscope without causing liner perforation. The standard flat-tip fiber requires greater insertion force at all angles and can cause the ureteroscope liner to leak if it is deflected 45° or more.


Assuntos
Lasers de Estado Sólido , Ureteroscópios , Ureteroscopia/instrumentação , Desenho de Equipamento , Hólmio , Terapia a Laser , Estresse Mecânico
3.
J Endourol ; 32(6): 534-540, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29649900

RESUMO

PURPOSE: The LithoClast Trilogy is a novel single probe, dual-energy lithotripter with ultrasonic (US) vibration and electromagnetic impact forces. ShockPulse and LithoClast Select are existing lithotripters that also use a combination of US and mechanical impact energies. We compared the efficacy and tip motion of these devices in an in vitro setting. MATERIALS AND METHODS: Begostones, in the ratio 15:3, were used in all trials. Test groups were Trilogy, ShockPulse, Select ultrasound (US) only, and Select ultrasound with pneumatic (USP). For clearance testing, a single investigator facile with each lithotripter fragmented 10 stones per device. For drill testing, a hands-free apparatus with a submerged balance was used to apply 1 or 2 lbs of pressure on a stone in contact with the device tip. High-speed photography was used to assess Trilogy and ShockPulse's probe tip motion. RESULTS: Select-USP was slowest and Trilogy fastest on clearance testing (p < 0.01). On 1 lbs drill testing, Select-US was slowest (p = 0.001). At 2 lbs, ShockPulse was faster than Select US (p = 0.027), but did not significantly outpace Trilogy nor Select-USP. At either weight, there was no significant difference between Trilogy and ShockPulse. During its US function, Trilogy's maximum downward tip displacement was 0.041 mm relative to 0.0025 mm with ShockPulse. Trilogy had 0.25 mm of maximum downward displacement during its impactor function while ShockPulse had 0.01 mm. CONCLUSIONS: Single probe dual-energy devices, such as Trilogy and ShockPulse, represent the next generation of lithotripters. Trilogy more efficiently cleared stone than currently available devices, which could be explained by its larger probe diameter and greater downward tip displacement during both US and impactor functions.


Assuntos
Cálculos Renais/cirurgia , Litotripsia/instrumentação , Nefrostomia Percutânea/instrumentação , Instrumentos Cirúrgicos/normas , Análise de Variância , Humanos , Cinética
4.
J Endourol ; 31(12): 1301-1306, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28978227

RESUMO

INTRODUCTION: Single-use ureteroscopes have been gaining popularity in recent years. We compare the optics, deflection, and irrigation flow of two novel single-use flexible ureteroscopes-the YC-FR-A and the NeoFlex-with contemporary reusable and single-use flexible ureteroscopes. METHODS: Five flexible ureteroscopes, YC-FR-A (YouCare Tech, China), NeoFlex (Neoscope, Inc., USA), LithoVue (Boston Scientific, USA), Flex-Xc (Karl Storz, Germany), and Cobra (Richard Wolf, Germany), were assessed in vitro for image resolution, distortion, field of view, depth of field, color representation, and grayscale imaging. Ureteroscope deflection and irrigation were also compared. RESULTS: The YC-FR-A showed a resolution of 5.04 lines/mm and 4.3% image distortion. NeoFlex showed a resolution of 17.9 lines/mm and 14.0% image distortion. No substantial difference was demonstrated regarding the other optic characteristics between the two. Across all tested ureteroscopes, single-use or reusable, the digital scopes performed best with regard to optics. The YC-FR-A had the greatest deflection at baseline, but lacks two-way deflection. The NeoFlex had comparable deflection at baseline to reusable devices. Both ureteroscopes had substantial loss of deflection with instruments in the working channel. The YC-FR-A had the greatest irrigation rate. The NeoFlex has comparable irrigation to contemporary ureteroscopes. CONCLUSIONS: The YouCare single-use fiberoptic flexible ureteroscope and NeoFlex single-use digital flexible ureteroscope perform comparably to current reusable ureteroscopes, possibly making each a viable alternative in the future. Newer YouCare single-use flexible ureteroscopes with a digital platform and two-way deflection may be more competitive, while the NeoFlex devices are undergoing rapid improvement as well. Further testing is necessary to validate the clinical performance and utility of these ureteroscopes, given the wide variety of single-use devices under development.


Assuntos
Equipamentos Descartáveis/normas , Tecnologia de Fibra Óptica/normas , Ureteroscópios/normas , Cor , Desenho de Equipamento , Humanos , Técnicas In Vitro , Ureteroscopia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA