Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
2.
Allergy ; 79(6): 1419-1439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38263898

RESUMO

Epidemiological studies have explored the relationship between allergic diseases and cancer risk or prognosis in AllergoOncology. Some studies suggest an inverse association, but uncertainties remain, including in IgE-mediated diseases and glioma. Allergic disease stems from a Th2-biased immune response to allergens in predisposed atopic individuals. Allergic disorders vary in phenotype, genotype and endotype, affecting their pathophysiology. Beyond clinical manifestation and commonly used clinical markers, there is ongoing research to identify novel biomarkers for allergy diagnosis, monitoring, severity assessment and treatment. Gliomas, the most common and diverse brain tumours, have in parallel undergone changes in classification over time, with specific molecular biomarkers defining glioma subtypes. Gliomas exhibit a complex tumour-immune interphase and distinct immune microenvironment features. Immunotherapy and targeted therapy hold promise for primary brain tumour treatment, but require more specific and effective approaches. Animal studies indicate allergic airway inflammation may delay glioma progression. This collaborative European Academy of Allergy and Clinical Immunology (EAACI) and European Association of Neuro-Oncology (EANO) Position Paper summarizes recent advances and emerging biomarkers for refined allergy and adult-type diffuse glioma classification to inform future epidemiological and clinical studies. Future research is needed to enhance our understanding of immune-glioma interactions to ultimately improve patient prognosis and survival.


Assuntos
Biomarcadores , Glioma , Hipersensibilidade , Humanos , Glioma/imunologia , Glioma/etiologia , Glioma/diagnóstico , Hipersensibilidade/diagnóstico , Hipersensibilidade/imunologia , Hipersensibilidade/etiologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/etiologia , Suscetibilidade a Doenças , Animais
3.
Allergy Asthma Immunol Res ; 15(6): 705-724, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37957791

RESUMO

Allergic diseases are a major public health problem with increasing prevalence. These immune-mediated diseases are characterized by defective epithelial barriers, which are explained by the epithelial barrier theory and continuously emerging evidence. Environmental exposures (exposome) including global warming, changes and loss of biodiversity, pollution, pathogens, allergens and mites, laundry and dishwasher detergents, surfactants, shampoos, body cleaners and household cleaners, microplastics, nanoparticles, toothpaste, enzymes and emulsifiers in processed foods, and dietary habits are responsible for the mucosal and skin barrier disruption. Exposure to barrier-damaging agents causes epithelial cell injury and barrier damage, colonization of opportunistic pathogens, loss of commensal bacteria, decreased microbiota diversity, bacterial translocation, allergic sensitization, and inflammation in the periepithelial area. Here, we review scientific evidence on the environmental components that impact epithelial barriers and microbiome composition and their influence on asthma and allergic diseases. We also discuss the historical overview of allergic diseases and the evolution of the hygiene hypothesis with theoretical evidence.

4.
Semin Immunol ; 70: 101846, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801907

RESUMO

Since the 1960 s, our health has been compromised by exposure to over 350,000 newly introduced toxic substances, contributing to the current pandemic in allergic, autoimmune and metabolic diseases. The "Epithelial Barrier Theory" postulates that these diseases are exacerbated by persistent periepithelial inflammation (epithelitis) triggered by exposure to a wide range of epithelial barrier-damaging substances as well as genetic susceptibility. The epithelial barrier serves as the body's primary physical, chemical, and immunological barrier against external stimuli. A leaky epithelial barrier facilitates the translocation of the microbiome from the surface of the afflicted tissues to interepithelial and even deeper subepithelial locations. In turn, opportunistic bacterial colonization, microbiota dysbiosis, local inflammation and impaired tissue regeneration and remodelling follow. Migration of inflammatory cells to susceptible tissues contributes to damage and inflammation, initiating and aggravating many chronic inflammatory diseases. The objective of this review is to highlight and evaluate recent studies on epithelial physiology and its role in the pathogenesis of chronic diseases in light of the epithelial barrier theory.


Assuntos
Hipersensibilidade , Doenças Metabólicas , Microbiota , Humanos , Inflamação , Doença Crônica , Disbiose
6.
Nat Commun ; 14(1): 2329, 2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087523

RESUMO

Rhinoviruses and allergens, such as house dust mite are major agents responsible for asthma exacerbations. The influence of pre-existing airway inflammation on the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. We analyse mechanisms of response to viral infection in experimental in vivo rhinovirus infection in healthy controls and patients with asthma, and in in vitro experiments with house dust mite, rhinovirus and SARS-CoV-2 in human primary airway epithelium. Here, we show that rhinovirus infection in patients with asthma leads to an excessive RIG-I inflammasome activation, which diminishes its accessibility for type I/III interferon responses, leading to their early functional impairment, delayed resolution, prolonged viral clearance and unresolved inflammation in vitro and in vivo. Pre-exposure to house dust mite augments this phenomenon by inflammasome priming and auxiliary inhibition of early type I/III interferon responses. Prior infection with rhinovirus followed by SARS-CoV-2 infection augments RIG-I inflammasome activation and epithelial inflammation. Timely inhibition of the epithelial RIG-I inflammasome may lead to more efficient viral clearance and lower the burden of rhinovirus and SARS-CoV-2 infections.


Assuntos
Fatores de Restrição Antivirais , Asma , COVID-19 , Proteína DEAD-box 58 , Inflamassomos , Rhinovirus , Humanos , Fatores de Restrição Antivirais/genética , Fatores de Restrição Antivirais/metabolismo , Asma/genética , Asma/imunologia , COVID-19/genética , COVID-19/imunologia , Proteína DEAD-box 58/metabolismo , Infecções por Enterovirus/genética , Infecções por Enterovirus/imunologia , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação , Interferon Tipo I , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/imunologia , Rhinovirus/metabolismo , Rhinovirus/patogenicidade , SARS-CoV-2
8.
Mucosal Immunol ; 16(1): 5-16, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642382

RESUMO

SARS-CoV-2 enters human cells through its main receptor, angiotensin-converting enzyme 2 (ACE2), which constitutes a limiting factor of infection. Recent findings demonstrating novel ACE2 isoforms implicate that this receptor is regulated in a more complex way than previously anticipated. However, it remains unknown how various inflammatory conditions influence the abundance of these ACE2 variants. Hence, we studied expression of ACE2 messenger RNA (mRNA) and protein isoforms, together with its glycosylation and spatial localization in primary human airway epithelium upon allergic inflammation and viral infection. We found that interleukin-13, the main type 2 cytokine, decreased expression of long ACE2 mRNA and reduced glycosylation of full-length ACE2 protein via alteration of N-linked glycosylation process, limiting its availability on the apical side of ciliated cells. House dust mite allergen did not affect the expression of ACE2. Rhinovirus infection increased short ACE2 mRNA, but it did not influence its protein expression. In addition, by screening other SARS-CoV-2 related host molecules, we found that interleukin-13 and rhinovirus significantly regulated mRNA, but not protein of transmembrane serine protease 2 and neuropilin 1. Regulation of ACE2 and other host proteins was comparable in healthy and asthmatic epithelium, underlining the lack of intrinsic differences but dependence on the inflammatory milieu in the airways.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Interleucina-13 , Peptidil Dipeptidase A/genética , Inflamação , Epitélio/metabolismo , RNA Mensageiro/metabolismo , Isoformas de Proteínas
9.
J Allergy Clin Immunol ; 151(2): 469-484, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464527

RESUMO

BACKGROUND: The increased prevalence of many chronic inflammatory diseases linked to gut epithelial barrier leakiness has prompted us to investigate the role of extensive use of dishwasher detergents, among other factors. OBJECTIVE: We sought to investigate the effects of professional and household dishwashers, and rinse agents, on cytotoxicity, barrier function, transcriptome, and protein expression in gastrointestinal epithelial cells. METHODS: Enterocytic liquid-liquid interfaces were established on permeable supports, and direct cellular cytotoxicity, transepithelial electrical resistance, paracellular flux, immunofluorescence staining, RNA-sequencing transcriptome, and targeted proteomics were performed. RESULTS: The observed detergent toxicity was attributed to exposure to rinse aid in a dose-dependent manner up to 1:20,000 v/v dilution. A disrupted epithelial barrier, particularly by rinse aid, was observed in liquid-liquid interface cultures, organoids, and gut-on-a-chip, demonstrating decreased transepithelial electrical resistance, increased paracellular flux, and irregular and heterogeneous tight junction immunostaining. When individual components of the rinse aid were investigated separately, alcohol ethoxylates elicited a strong toxic and barrier-damaging effect. RNA-sequencing transcriptome and proteomics data revealed upregulation in cell death, signaling and communication, development, metabolism, proliferation, and immune and inflammatory responses of epithelial cells. Interestingly, detergent residue from professional dishwashers demonstrated the remnant of a significant amount of cytotoxic and epithelial barrier-damaging rinse aid remaining on washed and ready-to-use dishware. CONCLUSIONS: The expression of genes involved in cell survival, epithelial barrier, cytokine signaling, and metabolism was altered by rinse aid in concentrations used in professional dishwashers. The alcohol ethoxylates present in the rinse aid were identified as the culprit component causing the epithelial inflammation and barrier damage.


Assuntos
Detergentes , Células Epiteliais , Humanos , Detergentes/metabolismo , Células Epiteliais/metabolismo , Trato Gastrointestinal , Regulação para Cima , RNA/metabolismo , Junções Íntimas/metabolismo , Mucosa Intestinal/metabolismo
11.
Allergy ; 77(10): 2888-2908, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35713644

RESUMO

Allergic diseases and asthma are heterogenous chronic inflammatory conditions with several distinct complex endotypes. Both environmental and genetic factors can influence the development and progression of allergy. Complex pathogenetic pathways observed in allergic disorders present a challenge in patient management and successful targeted treatment strategies. The increasing availability of high-throughput omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics allows studying biochemical systems and pathophysiological processes underlying allergic responses. Additionally, omics techniques present clinical applicability by functional identification and validation of biomarkers. Therefore, finding molecules or patterns characteristic for distinct immune-inflammatory endotypes, can subsequently influence its development, progression, and treatment. There is a great potential to further increase the effectiveness of single omics approaches by integrating them with other omics, and nonomics data. Systems biology aims to simultaneously and longitudinally understand multiple layers of a complex and multifactorial disease, such as allergy, or asthma by integrating several, separated data sets and generating a complete molecular profile of the condition. With the use of sophisticated biostatistics and machine learning techniques, these approaches provide in-depth insight into individual biological systems and will allow efficient and customized healthcare approaches, called precision medicine. In this EAACI Position Paper, the Task Force "Omics technologies in allergic research" broadly reviewed current advances and applicability of omics techniques in allergic diseases and asthma research, with a focus on methodology and data analysis, aiming to provide researchers (basic and clinical) with a desk reference in the field. The potential of omics strategies in understanding disease pathophysiology and key tools to reach unmet needs in allergy precision medicine, such as successful patients' stratification, accurate disease prognosis, and prediction of treatment efficacy and successful prevention measures are highlighted.


Assuntos
Asma , Hipersensibilidade , Asma/diagnóstico , Asma/genética , Asma/terapia , Biomarcadores , Genômica/métodos , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/genética , Hipersensibilidade/terapia , Metabolômica/métodos
12.
Clin Exp Allergy ; 52(10): 1183-1194, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35305052

RESUMO

BACKGROUND: Earlier studies have suggested that the leukocyte redistribution can be considered as an immunological marker of the clinical response to corticosteroids (CS), representing an easy measurable potential biomarker in severe asthma. OBJECTIVE: The aim of this study was to determinate the utility of the leukocyte redistribution as a biomarker of disease heterogeneity in patients with severe asthma and as a bioindicator of potential CS resistance. METHODS: We developed an unbiased clustering approach based on the clinical data and the flow cytometry results of peripheral blood leukocyte phenotypes of 142 patients with severe asthma before and after systemic CS administration. RESULTS: Based on the differences in the blood count eosinophils, neutrophils and lymphocytes, together with the flow cytometry measurements of basic T cell, B cell and NK cell subpopulations before and after systemic CS administration, we identified two severe asthma clusters, which differed in the cell frequencies, response to CS and atopy status. Patients in cluster 1 had higher frequency of blood eosinophils at baseline, were sensitized to less allergens and had better steroid responsiveness, measured as the pronounced leukocyte redistribution after the administration of systemic CS. Patients in cluster 2 were determined by the higher frequency of B-cells and stronger IgE sensitization status to the multiple allergens. They also displayed higher steroid resistance, as the clinical correlate for the lower leukocyte redistribution after administration of systemic CS. CONCLUSION: The flow cytometry-based profiling of the basic populations of immune cells in the blood and its analysis before and after systemic corticosteroid administration could improve personalized treatment approaches in patients with severe asthma.


Assuntos
Asma , Biomarcadores Ambientais , Corticosteroides/uso terapêutico , Alérgenos , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/genética , Biomarcadores , Eosinófilos , Humanos , Imunoglobulina E , Contagem de Leucócitos , Leucócitos
13.
Cells ; 10(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34943990

RESUMO

BACKGROUND: The exact role of individual inflammatory factor in heart failure with reduced ejection fraction (HFrEF) remains elusive. The study aimed to evaluate three monocyte subsets (classical-CD14++CD16-, intermediate-CD14++CD16+, and nonclassical-CD14+CD16++) in HFrEF patients and to assess the effect of the cardiac resynchronization therapy (CRT) on the changes in monocyte compartment. METHODS: The study included 85 patients with stable HFrEF. Twenty-five of them underwent CRT device implantation with subsequent 6-month assessment. The control group consisted of 23 volunteers without HFrEF. RESULTS: The analysis revealed that frequencies of non-classical-CD14+CD16++ monocytes were lower in HFrEF patients compared to the control group (6.98 IQR: 4.95-8.65 vs. 8.37 IQR: 6.47-9.94; p = 0.021), while CD14++CD16+ and CD14++CD16- did not differ. The analysis effect of CRT on the frequency of analysed monocyte subsets 6 months after CRT device implantation showed a significant increase in CD14+CD16++ (from 7 IQR: 4.5-8.4 to 7.9 IQR: 6.5-9.5; p = 0.042) and CD14++CD16+ (from 5.1 IQR: 3.7-6.5 to 6.8 IQR: 5.4-7.4; p = 0.017) monocytes, while the frequency of steady-state CD14++CD16- monocytes was decreased (from 81.4 IQR: 78-86.2 to 78.2 IQR: 76.1-81.7; p = 0.003). CONCLUSIONS: HFrEF patients present altered monocyte composition. CRT-related changes in the monocyte compartment achieve levels observed in controls without HFrEF.


Assuntos
Dispositivos de Terapia de Ressincronização Cardíaca , Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca/terapia , Idoso , Linhagem da Célula/genética , Feminino , Proteínas Ligadas por GPI/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Ferro/metabolismo , Receptores de Lipopolissacarídeos/genética , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Receptores de IgG/genética , Volume Sistólico
14.
Allergy ; 76(12): 3659-3686, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34519063

RESUMO

During the past years, there has been a global outbreak of allergic diseases, presenting a considerable medical and socioeconomical burden. A large fraction of allergic diseases is characterized by a type 2 immune response involving Th2 cells, type 2 innate lymphoid cells, eosinophils, mast cells, and M2 macrophages. Biomarkers are valuable parameters for precision medicine as they provide information on the disease endotypes, clusters, precision diagnoses, identification of therapeutic targets, and monitoring of treatment efficacies. The availability of powerful omics technologies, together with integrated data analysis and network-based approaches can help the identification of clinically useful biomarkers. These biomarkers need to be accurately quantified using robust and reproducible methods, such as reliable and point-of-care systems. Ideally, samples should be collected using quick, cost-efficient and noninvasive methods. In recent years, a plethora of research has been directed toward finding novel biomarkers of allergic diseases. Promising biomarkers of type 2 allergic diseases include sputum eosinophils, serum periostin and exhaled nitric oxide. Several other biomarkers, such as pro-inflammatory mediators, miRNAs, eicosanoid molecules, epithelial barrier integrity, and microbiota changes are useful for diagnosis and monitoring of allergic diseases and can be quantified in serum, body fluids and exhaled air. Herein, we review recent studies on biomarkers for the diagnosis and treatment of asthma, chronic urticaria, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, anaphylaxis, drug hypersensitivity and allergen immunotherapy. In addition, we discuss COVID-19 and allergic diseases within the perspective of biomarkers and recommendations on the management of allergic and asthmatic patients during the COVID-19 pandemic.


Assuntos
COVID-19 , Hipersensibilidade , Rinite Alérgica , Biomarcadores , Humanos , Hipersensibilidade/diagnóstico , Imunidade Inata , Linfócitos , Pandemias , SARS-CoV-2
15.
Front Immunol ; 12: 692004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394086

RESUMO

There is increasing evidence that the metabolic status of T cells and macrophages is associated with severe phenotypes of chronic inflammation, including allergic inflammation. Metabolic changes in immune cells have a crucial role in their inflammatory or regulatory responses. This notion is reinforced by metabolic diseases influencing global energy metabolism, such as diabetes or obesity, which are known risk factors of severity in inflammatory conditions, due to the metabolic-associated inflammation present in these patients. Since several metabolic pathways are closely tied to T cell and macrophage differentiation, a better understanding of metabolic alterations in immune disorders could help to restore and modulate immune cell functions. This link between energy metabolism and inflammation can be studied employing animal, human or cellular models. Analytical approaches rank from classic immunological studies to integrated analysis of metabolomics, transcriptomics, and proteomics. This review summarizes the main metabolic pathways of the cells involved in the allergic reaction with a focus on T cells and macrophages and describes different models and platforms of analysis used to study the immune system and its relationship with metabolism.


Assuntos
Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Metabolismo Energético , Homeostase , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo
17.
J Allergy Clin Immunol ; 147(5): 1865-1877, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33039478

RESUMO

BACKGROUND: Despite the efficacy of allergen-specific immunotherapy (AIT), the role of trained immunity and tolerance in this process has not been elucidated. OBJECTIVE: Here, we have performed a comprehensive longitudinal analysis of the systemic innate immune cell repertoire during the course of AIT. METHODS: Patients with allergy received standard preseasonal subcutaneous AIT with allergoids to birch and/or grass. Healthy controls were monitored without any intervention. Flow cytometry of innate lymphoid cell (ILC), natural killer cell, monocyte cell, and dendritic cell (DC) subsets was performed at baseline, 3 months (birch season), 6 months (grass seasons), and 12 months after the therapy in patients or at similar seasonal time points in controls. Additional analyses were performed in the third-year birch and grass season. RESULTS: We observed a durable decrease in group 2 ILCs and an increase of group 1 ILCs after AIT, with dynamic changes in their composition. We found that an expansion of CD127+CD25++ clusters caused observed shifts in the heterogeneity of group 1 ILCs. In addition, we observed development of CD127+CD25++c-Kit+ group 3 ILC clusters. Moreover, we found an increase in the number of intermediate monocytes in parallel with a reduction in nonclassical monocytes during the first year after AIT. Classical and intermediate monocytes presented significant heterogeneity in patients with allergy, but AIT reduced the HLA-DR++ clusters. Finally, an increase in plasmacytoid DCs and CD141+ myeloid DCs was observed in individuals with allergy, whereas the number of CD1c+ myeloid DCs was reduced during the first year of AIT. CONCLUSION: AIT induces changes in the composition and heterogeneity of circulating innate immune cells and brings them to the level observed in healthy individuals. Monitoring of ILCs, monocytes, and DCs during AIT might serve as a novel biomarker strategy.


Assuntos
Células Dendríticas/imunologia , Dessensibilização Imunológica , Linfócitos/imunologia , Monócitos/imunologia , Rinite Alérgica Sazonal/terapia , Adulto , Betula/imunologia , Feminino , Humanos , Tolerância Imunológica , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Poaceae/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Adulto Jovem
18.
Allergy ; 75(12): 3124-3146, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32997808

RESUMO

In this review, we discuss recent publications on asthma and review the studies that have reported on the different aspects of the prevalence, risk factors and prevention, mechanisms, diagnosis, and treatment of asthma. Many risk and protective factors and molecular mechanisms are involved in the development of asthma. Emerging concepts and challenges in implementing the exposome paradigm and its application in allergic diseases and asthma are reviewed, including genetic and epigenetic factors, microbial dysbiosis, and environmental exposure, particularly to indoor and outdoor substances. The most relevant experimental studies further advancing the understanding of molecular and immune mechanisms with potential new targets for the development of therapeutics are discussed. A reliable diagnosis of asthma, disease endotyping, and monitoring its severity are of great importance in the management of asthma. Correct evaluation and management of asthma comorbidity/multimorbidity, including interaction with asthma phenotypes and its value for the precision medicine approach and validation of predictive biomarkers, are further detailed. Novel approaches and strategies in asthma treatment linked to mechanisms and endotypes of asthma, particularly biologicals, are critically appraised. Finally, due to the recent pandemics and its impact on patient management, we discuss the challenges, relationships, and molecular mechanisms between asthma, allergies, SARS-CoV-2, and COVID-19.


Assuntos
Asma/epidemiologia , Hipersensibilidade/epidemiologia , Asma/diagnóstico , Asma/terapia , Biomarcadores , COVID-19 , Comorbidade , Disbiose , Expossoma , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/terapia , Pandemias , Fenótipo , Medicina de Precisão , Fatores de Risco
19.
Allergy ; 75(11): 2829-2845, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32496587

RESUMO

BACKGROUND: Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19. METHODS: We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status. RESULTS: ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis. CONCLUSIONS: Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Basigina/imunologia , COVID-19/epidemiologia , Doença Crônica/epidemiologia , Dipeptidil Peptidase 4/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Enzima de Conversão de Angiotensina 2/genética , Asma/epidemiologia , Asma/genética , Asma/imunologia , Basigina/genética , COVID-19/genética , COVID-19/imunologia , Criança , Pré-Escolar , Comorbidade , Dipeptidil Peptidase 4/genética , Feminino , Expressão Gênica/genética , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Hipertensão/imunologia , Imunidade Inata/imunologia , Lactente , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/genética , Obesidade/imunologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Fatores de Risco , SARS-CoV-2/genética , Adulto Jovem
20.
Nutrients ; 11(12)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817726

RESUMO

Diet-derived fatty acids (FAs) are essential sources of energy and fundamental structural components of cells. They also play important roles in the modulation of immune responses in health and disease. Saturated and unsaturated FAs influence the effector and regulatory functions of innate and adaptive immune cells by changing membrane composition and fluidity and by acting through specific receptors. Impaired balance of saturated/unsaturated FAs, as well as n-6/n-3 polyunsaturated FAs has significant consequences on immune system homeostasis, contributing to the development of many allergic, autoimmune, and metabolic diseases. In this paper, we discuss up-to-date knowledge and the clinical relevance of the influence of dietary FAs on the biology, homeostasis, and functions of epithelial cells, macrophages, dendritic cells, neutrophils, innate lymphoid cells, T cells and B cells. Additionally, we review the effects of dietary FAs on the pathogenesis of many diseases, including asthma, allergic rhinitis, food allergy, atopic dermatitis, rheumatoid arthritis, multiple sclerosis as well as type 1 and 2 diabetes.


Assuntos
Imunidade Adaptativa , Gorduras Insaturadas na Dieta/imunologia , Gorduras na Dieta/imunologia , Ácidos Graxos/imunologia , Imunidade Inata , Doenças Autoimunes/etiologia , Gorduras na Dieta/efeitos adversos , Gorduras Insaturadas na Dieta/efeitos adversos , Células Epiteliais/imunologia , Ácidos Graxos/efeitos adversos , Humanos , Hipersensibilidade Imediata/etiologia , Leucócitos/imunologia , Doenças Metabólicas/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA