Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 318: 120857, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513173

RESUMO

Complex legacy contamination is a major issue for many estuaries, with toxicity affecting change in bacterial communities, and their provision of associated goods and services. Sequencing surveys of bacterial community composition provide inferred function; however, additional insights may be generated by measurement of realised metabolic phenotypes. We apply multi-omics (genomics, lipidomics, and metabolomics), with traditional sediment quality analyses, to characterise sediment-associated bacterial communities in an estuary subject to legacy metal contamination (Zn, Hg, As, Cd, Cu and Pb). Analyses of bacterial composition and inferred function (genomics) are coupled with measurements of realised bacterial phenotype (metabolomics and lipidomics) at multiple industrialised and reference sites. At sites with the highest sediment metal concentrations (NTB), we also observed increased abundances of hydrocarbon and sulphuric acid metabolites, indicating additional sediment contamination. Bacterial phyla across sampled sites were dominated by Proteobacteria and Desulfobacteria. NTB sites were enriched with metabolically versatile, cooperative and biofilm forming phyla including, Zixibacteria, Spirochaetota, SAR324 clade, Proteobacteria, Latescibacterota, Desulfobacterota, Deferrisomtota and Acidobateriota; with inferred functions characterised by sulphur metabolism, pathways associated with the degradation of complex organic molecules, and fermentation. Reference sites were characterised by enhanced vitamin biosynthesis, cell wall, cofactor and carbohydrate biosynthesis, and CO2 fixation. Measured metabolic phenotypes at NTB sites supported predicted functions, with most consistent change observed to naphthalene and aminobenzoate degradation pathways and carbohydrate metabolism (galactose, amino and nucleotide sugar). Change in NTB metabolite profiles was most highly correlated with sediment Hg concentrations, indicative of toxic exposure and potential for Hg methylation. Lipid profiles generated further insight into potential functional (hydroxy fatty acids) and community level change (ceramide phosphoethanolamines, unsaturated glycerides). Multi-omics outputs provided insights into bacterial community functions, modes of contaminant toxicity and expressed mechanisms of adaptation, necessary to better inform management decisions and predictive models in increasingly human-influenced environments.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Humanos , Estuários , Multiômica , Rios , Sedimentos Geológicos/microbiologia , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Mercúrio/análise , Metais/análise , Bactérias/genética , Proteobactérias , Metais Pesados/análise
2.
Sci Rep ; 12(1): 15335, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097189

RESUMO

Quantifying the temporal change of bacterial communities is essential to understanding how both natural and anthropogenic pressures impact the functions of coastal marine ecosystems. Here we use weekly microbial DNA sampling across four years to show that bacterial phyla have distinct seasonal niches, with a richness peak in winter (i.e., an inverse relationship with daylength). Our results suggest that seasonal fluctuations, rather than the kinetic energy or resource hypotheses, dominated the pattern of bacterial diversity. These findings supplement those from global analyses which lack temporal replication and present few data from winter months in polar and temperate regions. Centered log-ratio transformed data provided new insights into the seasonal niche partitioning of conditionally rare phyla, such as Modulibacteria, Verrucomicrobiota, Synergistota, Deinococcota, and Fermentibacterota. These patterns could not be identified using the standard practice of ASV generation followed by rarefaction. Our study provides evidence that five globally relevant ecotypes of chemolithoautotrophic bacteria from the SUP05 lineage comprise a significant functional group with varying seasonal dominance patterns in the Bedford Basin.


Assuntos
Ecótipo , Estuários , Bactérias/genética , Ecossistema , Estações do Ano
3.
Environ Microbiol ; 24(5): 2449-2466, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35049099

RESUMO

We investigated the Southern Ocean (SO) prokaryote community structure via zero-radius operational taxonomic unit (zOTU) libraries generated from 16S rRNA gene sequencing of 223 full water column profiles. Samples reveal the prokaryote diversity trend between discrete water masses across multiple depths and latitudes in Indian (71-99°E, summer) and Pacific (170-174°W, autumn-winter) sectors of the SO. At higher taxonomic levels (phylum-family) we observed water masses to harbour distinct communities across both sectors, but observed sectorial variations at lower taxonomic levels (genus-zOTU) and relative abundance shifts for key taxa such as Flavobacteria, SAR324/Marinimicrobia, Nitrosopumilus and Nitrosopelagicus at both epi- and bathy-abyssopelagic water masses. Common surface bacteria were abundant in several deep-water masses and vice-versa suggesting connectivity between surface and deep-water microbial assemblages. Bacteria from same-sector Antarctic Bottom Water samples showed patchy, high beta-diversity which did not correlate well with measured environmental parameters or geographical distance. Unconventional depth distribution patterns were observed for key archaeal groups: Crenarchaeota was found across all depths in the water column and persistent high relative abundances of common epipelagic archaeon Nitrosopelagicus was observed in deep-water masses. Our findings reveal substantial regional variability of SO prokaryote assemblages that we argue should be considered in wide-scale SO ecosystem microbial modelling.


Assuntos
Ecossistema , Água do Mar , Archaea/genética , Bactérias/genética , Biodiversidade , Oceanos e Mares , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Água
4.
Environ Pollut ; 292(Pt B): 118408, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718088

RESUMO

Estuaries are subject to intense human use globally, with impacts from multiple stressors, such as metal contaminants. A key challenge is extending beyond traditional monitoring approaches to understand effects to biota and system function. To explore the metabolic effects of complex metal contaminants to sediment dwelling (benthic) fauna, we apply a multiple-lines-of-evidence approach, coupling environmental monitoring, benthic sampling, total metals analysis and targeted metabolomics. We characterise metabolic signatures of metal exposure in three benthic invertebrate taxa, which differed in distribution across sites and severity of metal exposure: sipunculid (very high), amphipod (high), maldanid polychaete (moderate). We observed sediment and tissue metal loads far exceeding sediment guidelines where toxicity-related adverse effects may be expected, for metals including, As, Cd, Pb, Zn and Hg. Change in site- and taxa-specific metabolite profiles was highly correlated with natural environmental drivers (sediment total organic carbon and water temperature). At the most metal influenced sites, metabolite variation was also correlated with sediment metal loads. Using supervised multivariate regression, taxa-specific metabolic signatures of increased exposure and possibility of toxic effects were characterised against multiple reference sites. Metabolic signatures varied according to each taxon and degree of metal exposure, but primarily indicated altered cysteine and methionine metabolism, metal-binding and elimination (lysosomal) activity, coupled to change in complex biosynthesis pathways, responses to oxidative stress, and cellular damage. This novel multiple-lines-of-evidence approach combining metabolomics with traditional environmental monitoring, enabled detection and characterisation of chronic metal exposure effects in situ in multiple invertebrate taxa. With capacity for application to rapid and effective monitoring of non-model species in complex environments, these approaches are critical for improved assessment and management of systems that are increasingly subject to anthropogenic drivers of change.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Humanos , Invertebrados , Metabolômica , Metais/análise , Metais/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Environ Microbiol ; 24(1): 404-419, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34766422

RESUMO

In the marine realm, microorganisms are responsible for the bulk of primary production, thereby sustaining marine life across all trophic levels. Longhurst provinces have distinct microbial fingerprints; however, little is known about how microbial diversity and primary productivity change at finer spatial scales. Here, we sampled the Atlantic Ocean from south to north (~50°S-50°N), every ~0.5° latitude. We conducted measurements of primary productivity, chlorophyll-a and relative abundance of 16S and 18S rRNA genes, alongside analyses of the physicochemical and hydrographic environment. We analysed the diversity of autotrophs, mixotrophs and heterotrophs, and noted distinct patterns among these guilds across provinces with high and low chlorophyll-a conditions. Eukaryotic autotrophs and prokaryotic heterotrophs showed a shared inter-province diversity pattern, distinct from the diversity pattern shared by mixotrophs, cyanobacteria and eukaryotic heterotrophs. Additionally, we calculated samplewise productivity-specific length scales, the potential horizontal displacement of microbial communities by surface currents to an intrinsic biological rate (here, specific primary productivity). This scale provides key context for our trophically disaggregated diversity analysis that we could relate to underlying oceanographic features. We integrate this element to provide more nuanced insights into the mosaic-like nature of microbial provincialism, linking diversity patterns to oceanographic transport through primary production.


Assuntos
Eucariotos , Microbiota , Oceano Atlântico , Clorofila A , Eucariotos/genética , RNA Ribossômico 18S/genética , Água do Mar/microbiologia
6.
Nat Commun ; 12(1): 2213, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850115

RESUMO

Global oceanographic monitoring initiatives originally measured abiotic essential ocean variables but are currently incorporating biological and metagenomic sampling programs. There is, however, a large knowledge gap on how to infer bacterial functions, the information sought by biogeochemists, ecologists, and modelers, from the bacterial taxonomic information (produced by bacterial marker gene surveys). Here, we provide a correlative understanding of how a bacterial marker gene (16S rRNA) can be used to infer latitudinal trends for metabolic pathways in global monitoring campaigns. From a transect spanning 7000 km in the South Pacific Ocean we infer ten metabolic pathways from 16S rRNA gene sequences and 11 corresponding metagenome samples, which relate to metabolic processes of primary productivity, temperature-regulated thermodynamic effects, coping strategies for nutrient limitation, energy metabolism, and organic matter degradation. This study demonstrates that low-cost, high-throughput bacterial marker gene data, can be used to infer shifts in the metabolic strategies at the community scale.


Assuntos
Bactérias/genética , Genes Bacterianos/genética , Redes e Vias Metabólicas/genética , Metagenômica/métodos , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Ecologia , Metagenoma , Oceano Pacífico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Termodinâmica
7.
Front Microbiol ; 11: 1261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655525

RESUMO

Increasing nitrogen (N) loads present a threat to estuaries, which are among the most heavily populated and perturbed parts of the world. N removal is largely mediated by the sediment microbial process of denitrification, in direct competition to dissimilatory nitrate reduction to ammonium (DNRA), which recycles nitrate to ammonium. Molecular proxies for N pathways are increasingly measured and analyzed, a major question in microbial ecology, however, is whether these proxies can add predictive power around the fate of N. We analyzed the diversity and community composition of sediment nirS and nrfA genes in 11 temperate estuaries, covering four types of land use in Australia, and analyzed how these might be used to predict N removal. Our data suggest that sediment microbiomes play a central role in controlling the magnitude of the individual N removal rates in the 11 estuaries. Inclusion, however, of relative gene abundances of 16S, nirS, nrfA, including their ratios did not improve physicochemical measurement-based regression models to predict rates of denitrification or DNRA. Co-occurrence network analyses of nirS showed a greater modularity and a lower number of keystone OTUs in pristine sites compared to urban estuaries, suggesting a higher degree of niche partitioning in pristine estuaries. The distinctive differences between the urban and pristine network structures suggest that the nirS gene could be a likely gene candidate to understand the mechanisms by which these denitrifying communities form and respond to anthropogenic pressures.

8.
Proc Natl Acad Sci U S A ; 115(35): E8266-E8275, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30108147

RESUMO

Marine microbes along with microeukaryotes are key regulators of oceanic biogeochemical pathways. Here we present a high-resolution (every 0.5° of latitude) dataset describing microbial pro- and eukaryotic richness in the surface and just below the thermocline along a 7,000-km transect from 66°S at the Antarctic ice edge to the equator in the South Pacific Ocean. The transect, conducted in austral winter, covered key oceanographic features including crossing of the polar front (PF), the subtropical front (STF), and the equatorial upwelling region. Our data indicate that temperature does not determine patterns of marine microbial richness, complementing the global model data from Ladau et al. [Ladau J, et al. (2013) ISME J 7:1669-1677]. Rather, NH4+, nanophytoplankton, and primary productivity were the main drivers for archaeal and bacterial richness. Eukaryote richness was highest in the least-productive ocean region, the tropical oligotrophic province. We also observed a unique diversity pattern in the South Pacific Ocean: a regional increase in archaeal and bacterial diversity between 10°S and the equator. Rapoport's rule describes the tendency for the latitudinal ranges of species to increase with latitude. Our data showed that the mean latitudinal ranges of archaea and bacteria decreased with latitude. We show that permanent oceanographic features, such as the STF and the equatorial upwelling, can have a significant influence on both alpha-diversity and beta-diversity of pro- and eukaryotes.


Assuntos
Archaea/fisiologia , Bactérias , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Fitoplâncton/fisiologia , Microbiologia da Água , Regiões Antárticas , Archaea/classificação , Oceano Pacífico , Fitoplâncton/classificação
9.
Sci Data ; 5: 180018, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461516

RESUMO

Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.


Assuntos
Clorofila , Austrália , Bases de Dados Factuais , Ecossistema , Fitoplâncton , Água do Mar
12.
Sci Data ; 3: 160043, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27328409

RESUMO

There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.


Assuntos
Bases de Dados Factuais , Fitoplâncton , Austrália , Biomassa , Mudança Climática , Ecossistema , Eutrofização
13.
PLoS One ; 11(1): e0145996, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800249

RESUMO

Nitrous oxide (N2O) is a powerful greenhouse gas and a key catalyst of stratospheric ozone depletion. Yet, little data exist about the sink and source terms of the production and reduction of N2O outside the well-known oxygen minimum zones (OMZ). Here we show the presence of functional marker genes for the reduction of N2O in the last step of the denitrification process (nitrous oxide reductase genes; nosZ) in oxygenated surface waters (180-250 O2 µmol.kg(-1)) in the south-eastern Indian Ocean. Overall copy numbers indicated that nosZ genes represented a significant proportion of the microbial community, which is unexpected in these oxygenated waters. Our data show strong temperature sensitivity for nosZ genes and reaction rates along a vast latitudinal gradient (32°S-12°S). These data suggest a large N2O sink in the warmer Tropical waters of the south-eastern Indian Ocean. Clone sequencing from PCR products revealed that most denitrification genes belonged to Rhodobacteraceae. Our work highlights the need to investigate the feedback and tight linkages between nitrification and denitrification (both sources of N2O, but the latter also a source of bioavailable N losses) in the understudied yet strategic Indian Ocean and other oligotrophic systems.


Assuntos
Efeito Estufa/prevenção & controle , Óxido Nitroso , Oxirredutases/genética , Água do Mar/microbiologia , Desnitrificação , Oceano Índico , Rhodobacteraceae/genética , Clima Tropical , Microbiologia da Água
14.
Appl Environ Microbiol ; 80(21): 6750-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25172848

RESUMO

Understanding the interconnectivity of oceanic carbon and nitrogen cycles, specifically carbon and nitrogen fixation, is essential in elucidating the fate and distribution of carbon in the ocean. Traditional techniques measure either organism abundance or biochemical rates. As such, measurements are performed on separate samples and on different time scales. Here, we developed a method to simultaneously quantify organisms while estimating rates of fixation across time and space for both carbon and nitrogen. Tyramide signal amplification fluorescence in situ hybridization (TSA-FISH) of mRNA for functionally specific oligonucleotide probes for rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase; carbon fixation) and nifH (nitrogenase; nitrogen fixation) was combined with flow cytometry to measure abundance and estimate activity. Cultured samples representing a diversity of phytoplankton (cyanobacteria, coccolithophores, chlorophytes, diatoms, and dinoflagellates), as well as environmental samples from the open ocean (Gulf of Mexico, USA, and southeastern Indian Ocean, Australia) and an estuary (Galveston Bay, Texas, USA), were successfully hybridized. Strong correlations between positively tagged community abundance and (14)C/(15)N measurements are presented. We propose that these methods can be used to estimate carbon and nitrogen fixation in environmental communities. The utilization of mRNA TSA-FISH to detect multiple active microbial functions within the same sample will offer increased understanding of important biogeochemical cycles in the ocean.


Assuntos
Ciclo do Carbono , Microbiologia Ambiental , Citometria de Fluxo/métodos , Hibridização In Situ/métodos , Fixação de Nitrogênio , Oxirredutases/análise , Ribulose-Bifosfato Carboxilase/análise , Nitrogênio/metabolismo , Oxirredutases/genética , Ribulose-Bifosfato Carboxilase/genética
15.
Biotechnol Bioeng ; 108(9): 2078-87, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21495012

RESUMO

The feasibility of growth, calcium carbonate and lipid production of the coccolithophorid algae (Prymnesiophyceae), Pleurochrysis carterae, Emiliania huxleyi, and Gephyrocapsa oceanica, was investigated in plate, carboy, airlift, and tubular photobioreactors. The plate photobioreactor was the most promising closed cultivation system. All species could be grown in the carboy photobioreactor. However, P. carterae was the only species which grew in an airlift photobioreactor. Despite several attempts to grow these coccolithophorid species in the tubular photobioreactor (Biocoil), including modification of the airlift and sparger design, no net growth could be achieved. The shear produced by turbulence and bubble effects are the most likely reasons for this failure to grow in the Biocoil. The highest total dry weight, lipid and calcium carbonate productivities achieved by P. carterae in the plate photobioreactors were 0.54, 0.12, and 0.06 g L(-1) day(-1) respectively. Irrespective of the type of photobioreactor, the productivities were P. carterae > E. huxleyi > G. oceanica. Pleurochrysis carterae lipid (20-25% of dry weight) and calcium carbonate (11-12% of dry weight) contents were also the highest of all species tested.


Assuntos
Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Fotobiorreatores , Biodegradação Ambiental , Carbonato de Cálcio/metabolismo , Dióxido de Carbono/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Desenho de Equipamento , Haptófitas/química , Haptófitas/citologia , Lipídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA