Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Limnol Oceanogr ; 69(1): 67-80, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38899067

RESUMO

Historically, our understanding of bacterial ecology in the Indian Ocean has been limited to regional studies that place emphasis on community structure and function within oxygen minimum zones. Thus, bacterial community dynamics across the wider Indian Ocean are largely undescribed. As part of Bio-GO-SHIP, we sequenced the 16S rRNA gene from 465 samples collected on sections I07N and I09N. We found that (i) there were 23 distinct bioregions within the Indian Ocean, (ii) the southeastern gyre had the largest gradient in bacterial alpha-diversity, (iii) the Indian Ocean surface microbiome was primarily composed of a core set of taxa, and (iv) bioregions were characterized by transitions in physical and geochemical conditions. Overall, we showed that bacterial community structure spatially delineated the surface Indian Ocean and that these microbially-defined regions were reflective of subtle ocean physical and geochemical gradients. Therefore, incorporating metrics of in-situ microbial communities into marine ecological regions traditionally defined by remote sensing will improve our ability to delineate warm, oligotrophic regions.

2.
Sci Rep ; 12(1): 15335, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097189

RESUMO

Quantifying the temporal change of bacterial communities is essential to understanding how both natural and anthropogenic pressures impact the functions of coastal marine ecosystems. Here we use weekly microbial DNA sampling across four years to show that bacterial phyla have distinct seasonal niches, with a richness peak in winter (i.e., an inverse relationship with daylength). Our results suggest that seasonal fluctuations, rather than the kinetic energy or resource hypotheses, dominated the pattern of bacterial diversity. These findings supplement those from global analyses which lack temporal replication and present few data from winter months in polar and temperate regions. Centered log-ratio transformed data provided new insights into the seasonal niche partitioning of conditionally rare phyla, such as Modulibacteria, Verrucomicrobiota, Synergistota, Deinococcota, and Fermentibacterota. These patterns could not be identified using the standard practice of ASV generation followed by rarefaction. Our study provides evidence that five globally relevant ecotypes of chemolithoautotrophic bacteria from the SUP05 lineage comprise a significant functional group with varying seasonal dominance patterns in the Bedford Basin.


Assuntos
Ecótipo , Estuários , Bactérias/genética , Ecossistema , Estações do Ano
3.
Environ Microbiol ; 24(5): 2449-2466, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35049099

RESUMO

We investigated the Southern Ocean (SO) prokaryote community structure via zero-radius operational taxonomic unit (zOTU) libraries generated from 16S rRNA gene sequencing of 223 full water column profiles. Samples reveal the prokaryote diversity trend between discrete water masses across multiple depths and latitudes in Indian (71-99°E, summer) and Pacific (170-174°W, autumn-winter) sectors of the SO. At higher taxonomic levels (phylum-family) we observed water masses to harbour distinct communities across both sectors, but observed sectorial variations at lower taxonomic levels (genus-zOTU) and relative abundance shifts for key taxa such as Flavobacteria, SAR324/Marinimicrobia, Nitrosopumilus and Nitrosopelagicus at both epi- and bathy-abyssopelagic water masses. Common surface bacteria were abundant in several deep-water masses and vice-versa suggesting connectivity between surface and deep-water microbial assemblages. Bacteria from same-sector Antarctic Bottom Water samples showed patchy, high beta-diversity which did not correlate well with measured environmental parameters or geographical distance. Unconventional depth distribution patterns were observed for key archaeal groups: Crenarchaeota was found across all depths in the water column and persistent high relative abundances of common epipelagic archaeon Nitrosopelagicus was observed in deep-water masses. Our findings reveal substantial regional variability of SO prokaryote assemblages that we argue should be considered in wide-scale SO ecosystem microbial modelling.


Assuntos
Ecossistema , Água do Mar , Archaea/genética , Bactérias/genética , Biodiversidade , Oceanos e Mares , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Água
4.
Environ Microbiol ; 24(1): 404-419, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34766422

RESUMO

In the marine realm, microorganisms are responsible for the bulk of primary production, thereby sustaining marine life across all trophic levels. Longhurst provinces have distinct microbial fingerprints; however, little is known about how microbial diversity and primary productivity change at finer spatial scales. Here, we sampled the Atlantic Ocean from south to north (~50°S-50°N), every ~0.5° latitude. We conducted measurements of primary productivity, chlorophyll-a and relative abundance of 16S and 18S rRNA genes, alongside analyses of the physicochemical and hydrographic environment. We analysed the diversity of autotrophs, mixotrophs and heterotrophs, and noted distinct patterns among these guilds across provinces with high and low chlorophyll-a conditions. Eukaryotic autotrophs and prokaryotic heterotrophs showed a shared inter-province diversity pattern, distinct from the diversity pattern shared by mixotrophs, cyanobacteria and eukaryotic heterotrophs. Additionally, we calculated samplewise productivity-specific length scales, the potential horizontal displacement of microbial communities by surface currents to an intrinsic biological rate (here, specific primary productivity). This scale provides key context for our trophically disaggregated diversity analysis that we could relate to underlying oceanographic features. We integrate this element to provide more nuanced insights into the mosaic-like nature of microbial provincialism, linking diversity patterns to oceanographic transport through primary production.


Assuntos
Eucariotos , Microbiota , Oceano Atlântico , Clorofila A , Eucariotos/genética , RNA Ribossômico 18S/genética , Água do Mar/microbiologia
5.
Nat Commun ; 12(1): 2213, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850115

RESUMO

Global oceanographic monitoring initiatives originally measured abiotic essential ocean variables but are currently incorporating biological and metagenomic sampling programs. There is, however, a large knowledge gap on how to infer bacterial functions, the information sought by biogeochemists, ecologists, and modelers, from the bacterial taxonomic information (produced by bacterial marker gene surveys). Here, we provide a correlative understanding of how a bacterial marker gene (16S rRNA) can be used to infer latitudinal trends for metabolic pathways in global monitoring campaigns. From a transect spanning 7000 km in the South Pacific Ocean we infer ten metabolic pathways from 16S rRNA gene sequences and 11 corresponding metagenome samples, which relate to metabolic processes of primary productivity, temperature-regulated thermodynamic effects, coping strategies for nutrient limitation, energy metabolism, and organic matter degradation. This study demonstrates that low-cost, high-throughput bacterial marker gene data, can be used to infer shifts in the metabolic strategies at the community scale.


Assuntos
Bactérias/genética , Genes Bacterianos/genética , Redes e Vias Metabólicas/genética , Metagenômica/métodos , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Ecologia , Metagenoma , Oceano Pacífico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Termodinâmica
6.
Front Microbiol ; 11: 1261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655525

RESUMO

Increasing nitrogen (N) loads present a threat to estuaries, which are among the most heavily populated and perturbed parts of the world. N removal is largely mediated by the sediment microbial process of denitrification, in direct competition to dissimilatory nitrate reduction to ammonium (DNRA), which recycles nitrate to ammonium. Molecular proxies for N pathways are increasingly measured and analyzed, a major question in microbial ecology, however, is whether these proxies can add predictive power around the fate of N. We analyzed the diversity and community composition of sediment nirS and nrfA genes in 11 temperate estuaries, covering four types of land use in Australia, and analyzed how these might be used to predict N removal. Our data suggest that sediment microbiomes play a central role in controlling the magnitude of the individual N removal rates in the 11 estuaries. Inclusion, however, of relative gene abundances of 16S, nirS, nrfA, including their ratios did not improve physicochemical measurement-based regression models to predict rates of denitrification or DNRA. Co-occurrence network analyses of nirS showed a greater modularity and a lower number of keystone OTUs in pristine sites compared to urban estuaries, suggesting a higher degree of niche partitioning in pristine estuaries. The distinctive differences between the urban and pristine network structures suggest that the nirS gene could be a likely gene candidate to understand the mechanisms by which these denitrifying communities form and respond to anthropogenic pressures.

7.
Proc Natl Acad Sci U S A ; 115(35): E8266-E8275, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30108147

RESUMO

Marine microbes along with microeukaryotes are key regulators of oceanic biogeochemical pathways. Here we present a high-resolution (every 0.5° of latitude) dataset describing microbial pro- and eukaryotic richness in the surface and just below the thermocline along a 7,000-km transect from 66°S at the Antarctic ice edge to the equator in the South Pacific Ocean. The transect, conducted in austral winter, covered key oceanographic features including crossing of the polar front (PF), the subtropical front (STF), and the equatorial upwelling region. Our data indicate that temperature does not determine patterns of marine microbial richness, complementing the global model data from Ladau et al. [Ladau J, et al. (2013) ISME J 7:1669-1677]. Rather, NH4+, nanophytoplankton, and primary productivity were the main drivers for archaeal and bacterial richness. Eukaryote richness was highest in the least-productive ocean region, the tropical oligotrophic province. We also observed a unique diversity pattern in the South Pacific Ocean: a regional increase in archaeal and bacterial diversity between 10°S and the equator. Rapoport's rule describes the tendency for the latitudinal ranges of species to increase with latitude. Our data showed that the mean latitudinal ranges of archaea and bacteria decreased with latitude. We show that permanent oceanographic features, such as the STF and the equatorial upwelling, can have a significant influence on both alpha-diversity and beta-diversity of pro- and eukaryotes.


Assuntos
Archaea/fisiologia , Bactérias , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Fitoplâncton/fisiologia , Microbiologia da Água , Regiões Antárticas , Archaea/classificação , Oceano Pacífico , Fitoplâncton/classificação
8.
PLoS One ; 11(1): e0145996, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800249

RESUMO

Nitrous oxide (N2O) is a powerful greenhouse gas and a key catalyst of stratospheric ozone depletion. Yet, little data exist about the sink and source terms of the production and reduction of N2O outside the well-known oxygen minimum zones (OMZ). Here we show the presence of functional marker genes for the reduction of N2O in the last step of the denitrification process (nitrous oxide reductase genes; nosZ) in oxygenated surface waters (180-250 O2 µmol.kg(-1)) in the south-eastern Indian Ocean. Overall copy numbers indicated that nosZ genes represented a significant proportion of the microbial community, which is unexpected in these oxygenated waters. Our data show strong temperature sensitivity for nosZ genes and reaction rates along a vast latitudinal gradient (32°S-12°S). These data suggest a large N2O sink in the warmer Tropical waters of the south-eastern Indian Ocean. Clone sequencing from PCR products revealed that most denitrification genes belonged to Rhodobacteraceae. Our work highlights the need to investigate the feedback and tight linkages between nitrification and denitrification (both sources of N2O, but the latter also a source of bioavailable N losses) in the understudied yet strategic Indian Ocean and other oligotrophic systems.


Assuntos
Efeito Estufa/prevenção & controle , Óxido Nitroso , Oxirredutases/genética , Água do Mar/microbiologia , Desnitrificação , Oceano Índico , Rhodobacteraceae/genética , Clima Tropical , Microbiologia da Água
9.
Appl Environ Microbiol ; 80(21): 6750-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25172848

RESUMO

Understanding the interconnectivity of oceanic carbon and nitrogen cycles, specifically carbon and nitrogen fixation, is essential in elucidating the fate and distribution of carbon in the ocean. Traditional techniques measure either organism abundance or biochemical rates. As such, measurements are performed on separate samples and on different time scales. Here, we developed a method to simultaneously quantify organisms while estimating rates of fixation across time and space for both carbon and nitrogen. Tyramide signal amplification fluorescence in situ hybridization (TSA-FISH) of mRNA for functionally specific oligonucleotide probes for rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase; carbon fixation) and nifH (nitrogenase; nitrogen fixation) was combined with flow cytometry to measure abundance and estimate activity. Cultured samples representing a diversity of phytoplankton (cyanobacteria, coccolithophores, chlorophytes, diatoms, and dinoflagellates), as well as environmental samples from the open ocean (Gulf of Mexico, USA, and southeastern Indian Ocean, Australia) and an estuary (Galveston Bay, Texas, USA), were successfully hybridized. Strong correlations between positively tagged community abundance and (14)C/(15)N measurements are presented. We propose that these methods can be used to estimate carbon and nitrogen fixation in environmental communities. The utilization of mRNA TSA-FISH to detect multiple active microbial functions within the same sample will offer increased understanding of important biogeochemical cycles in the ocean.


Assuntos
Ciclo do Carbono , Microbiologia Ambiental , Citometria de Fluxo/métodos , Hibridização In Situ/métodos , Fixação de Nitrogênio , Oxirredutases/análise , Ribulose-Bifosfato Carboxilase/análise , Nitrogênio/metabolismo , Oxirredutases/genética , Ribulose-Bifosfato Carboxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA