Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Genome Med ; 16(1): 75, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822427

RESUMO

BACKGROUND: Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS). METHODS: The International Mouse Phenotyping Consortium (IMPC) is an effort to establish gene function by knocking-out all genes in the mouse genome and generating corresponding phenotype data. We used mouse embryonic imaging data generated by the Deciphering Mechanisms of Developmental Disorders (DMDD) project to screen 209 embryonic lethal and sub-viable knockout mouse lines for pituitary malformations. RESULTS: Of the 209 knockout mouse lines, we identified 51 that have embryonic pituitary malformations. These genes not only represent new candidates for CH, but also reveal new molecular pathways not previously associated with pituitary organogenesis. We used this list of candidate genes to mine whole exome sequencing data of a cohort of patients with CH, and we identified variants in two unrelated cases for two genes, MORC2 and SETD5, with CH and other syndromic features. CONCLUSIONS: The screening and analysis of IMPC phenotyping data provide proof-of-principle that recessive lethal mouse mutants generated by the knockout mouse project are an excellent source of candidate genes for congenital hypopituitarism in children.


Assuntos
Hipopituitarismo , Camundongos Knockout , Hipófise , Hipopituitarismo/genética , Animais , Humanos , Hipófise/metabolismo , Hipófise/anormalidades , Hipófise/patologia , Camundongos , Fenótipo , Feminino , Masculino , Modelos Animais de Doenças , Sequenciamento do Exoma , Displasia Septo-Óptica/genética
2.
Mol Cell Endocrinol ; 586: 112163, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246572

RESUMO

NOTCH2 is expressed in pituitary stem cells and is necessary for stem cell maintenance, proliferation, and differentiation. However, the pathways NOTCH2 engages to affect pituitary development remain unclear. In this study, we hypothesized that glycoprotein hormone subunit A2 (GPHA2), a corneal stem cell factor and ligand for the thyroid stimulating hormone receptor (TSHR), is downstream of NOTCH2 signaling. We found Gpha2 is expressed in quiescent pituitary stem cells by RNAscope in situ hybridization and scRNA seq. In Notch2 conditional knockout pituitaries, Gpha2 mRNA is reduced compared with control littermates. We then investigated the possible functions of GPHA2. Pituitaries treated with a GPHA2 peptide do not have a change in proliferation. However, in dissociated adult pituitary cells, GPHA2 increased pCREB expression and this induction was reversed by co-treatment with a TSHR inhibitor. These data suggest GPHA2 is a NOTCH2 related stem cell factor that activates TSHR signaling, potentially impacting pituitary development.


Assuntos
Hipófise , Fator de Células-Tronco , Adulto , Humanos , Hipófise/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores da Tireotropina , Fator de Células-Tronco/metabolismo , Células-Tronco/metabolismo
3.
Biol Reprod ; 110(1): 198-210, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37812459

RESUMO

Di(2-ethylhexyl) phthalate and diisononyl phthalate are widely used as plasticizers in polyvinyl chloride products. Short-term exposures to phthalates affect hormone levels, ovarian follicle populations, and ovarian gene expression. However, limited data exist regarding the effects of long-term exposure to phthalates on reproductive functions. Thus, this study tested the hypothesis that short-term and long-term exposure to di(2-ethylhexyl) phthalate or diisononyl phthalate disrupts follicle dynamics, ovarian and pituitary gene expression, and hormone levels in female mice. Adult CD-1 female mice were exposed to vehicle, di(2-ethylhexyl) phthalate, or diisononyl phthalate (0.15 ppm, 1.5 ppm, or 1500 ppm) via the chow for 1 or 6 months. Short-term exposure to di(2-ethylhexyl) phthalate (0.15 ppm) and diisononyl phthalate (1.5 ppm) decreased serum follicle-stimulating hormone levels compared to control. Long-term exposure to di(2-ethylhexyl) phthalate and diisononyl phthalate (1500 ppm) increased the percentage of primordial follicles and decreased the percentages of preantral and antral follicles compared to control. Both phthalates increased follicle-stimulating hormone levels (di(2-ethylhexyl) phthalate at 1500 ppm; diisononyl phthalate at 1.5 ppm) and decreased luteinizing hormone levels (di(2-ethylhexyl) phthalate at 0.15 and 1.5 ppm; diisononyl phthalate at 1.5 ppm and 1500 ppm) compared to control. Furthermore, both phthalates altered the expression of pituitary gonadotropin subunit genes (Cga, Fshb, and Lhb) and a transcription factor (Nr5a1) that regulates gonadotropin synthesis. These data indicate that long-term exposure to di(2-ethylhexyl) phthalate and diisononyl phthalate alters follicle growth dynamics in the ovary and the expression of gonadotropin subunit genes in the pituitary and consequently luteinizing hormone and follicle-stimulating hormone synthesis.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Camundongos , Animais , Feminino , Ácidos Ftálicos/toxicidade , Dietilexilftalato/toxicidade , Folículo Ovariano/metabolismo , Hormônio Foliculoestimulante/farmacologia , Hormônio Luteinizante/metabolismo
4.
Reprod Toxicol ; 122: 108489, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839492

RESUMO

Phthalates are chemicals ubiquitously used in industry. Individual phthalates have been found to adversely affect female reproduction; however, humans are exposed to a mixture of phthalates daily, primarily through ingestion. Previous studies show that exposure to an environmentally relevant mixture of phthalates (Mix) can affect female reproduction. Little research, however, has been conducted on the effects of short-term (1 month) and long-term (6 months) exposure to Mix on ovarian functions. Thus, this study tested the hypothesis that short-term and long-term exposure to Mix alters ovarian folliculogenesis, serum hormone concentrations, pituitary gene expression, and ovarian expression of genes involved in steroidogenesis, apoptosis, cell cycle regulation, and oxidative stress. Adult CD-1 female mice were exposed to vehicle control (corn oil) or Mix (0.15-1500 ppm) in the chow for 1 or 6 months. Exposure to Mix for 1 month increased the number of atretic follicles (0.15 ppm), altered ovarian gene expression (0.15 ppm, 1500 ppm), and decreased serum testosterone (1.5 ppm) compared to control. Exposure to Mix for 6 months increased serum follicle-stimulating hormone (FSH) (0.15 ppm), decreased serum luteinizing hormone (LH) (0.15 ppm, 1.5 ppm, and 1500 ppm), decreased serum estradiol (1500 ppm), altered pituitary gene expression (1500 ppm), increased the number (1500 ppm) and percentage (1.5 ppm and 1500 ppm) of primordial follicles, and decreased the percentage of preantral (1500 ppm) and antral (1.5 ppm and 1500 ppm) follicles compared to control. These data indicate that exposure to Mix can alter folliculogenesis, steroidogenesis, and gene expression in female mice.


Assuntos
Exposição Dietética , Folículo Ovariano , Adulto , Humanos , Camundongos , Feminino , Animais , Hormônio Luteinizante , Hormônio Foliculoestimulante , Expressão Gênica , Estradiol
5.
Endocrinology ; 164(10)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37616545

RESUMO

In humans and mice, loss-of-function mutations in growth hormone-releasing hormone receptor (GHRHR) cause isolated GH deficiency. The mutant GHRHR mouse model, GhrhrLit/Lit (LIT), exhibits loss of serum GH, but also fewer somatotropes. However, how loss of GHRH signaling affects expansion of stem and progenitor cells giving rise to GH-producing cells is unknown. LIT mice and wild-type littermates were examined for differences in proliferation and gene expression of pituitary lineage markers by quantitative reverse transcription polymerase chain reaction and immunohistochemistry at postnatal day 5 (p5) and 5 weeks. At p5, the LIT mouse shows a global decrease in pituitary proliferation measured by proliferation marker Ki67 and phospho-histone H3. This proliferative defect is seen in a pituitary cell expressing POU1F1 with or without GH. SOX9-positive progenitors show no changes in proliferation in p5 LIT mice. Additionally, the other POU1F1 lineage cells are not decreased in number; rather, we observe an increase in lactotrope cell population as well as messenger RNA for Tshb and Prl. In the 5-week LIT pituitary, the proliferative deficit in POU1F1-expressing cells observed neonatally persists, while the number and proliferative proportion of SOX9 cells do not appear changed. Treatment of cultured pituitary explants with GHRH promotes proliferation of POU1F1-expressing cells, but not GH-positive cells, in a mitogen-activated protein kinase-dependent manner. These findings indicate that hypothalamic GHRH targets proliferation of a POU1F1-positive cell, targeted to the somatotrope lineage, to fine tune their numbers.


Assuntos
Lactotrofos , Doenças da Hipófise , Humanos , Animais , Camundongos , Animais Recém-Nascidos , Hipófise , Proliferação de Células/genética
6.
Nat Rev Endocrinol ; 19(11): 671-678, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37592077

RESUMO

In the 2022 fifth edition of the WHO Classification of Endocrine Tumours and of Central Nervous System Tumours, pituitary adenomas are reclassified as neuroendocrine tumours (NETs). This change confers an oncology label to neoplasms that are overwhelmingly benign. A comprehensive clinical classification schema is required to guide prognosis, therapy and outcomes for all patients with pituitary adenomas. Pituitary adenomas and NETs exhibit some morphological and ultrastructural similarities. However, unlike NETs, pituitary adenomas are highly prevalent, yet indolent and rarely become malignant. This Perspective presents the outcomes of an interdisciplinary international workshop that addressed the merit and clinical implications of the classification change of pituitary adenoma to NET. Many non-histological factors provide mechanistic insight and influence the prognosis and treatment of pituitary adenoma. We recommend the development of a comprehensive classification that integrates clinical, genetic, biochemical, radiological, pathological and molecular information for all anterior pituitary neoplasms.

7.
Reprod Toxicol ; 120: 108427, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400041

RESUMO

Polychlorinated biphenyls (PCBs) were used in industrial applications until they were banned in the 1970s, but they still persist in the environment. Little is known about the long-term effects of exposure to PCB mixtures on the rat ovary during critical developmental periods. Thus, this study tested whether prenatal and postnatal exposures to PCBs affect follicle numbers and gene expression in the ovaries of F1 offspring. Sprague-Dawley rats were treated with vehicle or Aroclor 1221 (A1221) at 1 mg/kg/day during embryonic days 8-18 and/or postnatal days (PND) 1-21. Ovaries from F1 rats were collected for assessment of follicle numbers and differential expression of estrogen receptor 1 (Esr1), estrogen receptor 2 (Esr2), androgen receptor (Ar), progesterone receptor (Pgr), and Ki-67 (Ki67) at PNDs 8, 32, and 60. Sera were collected for measurement of estradiol concentrations. Prenatal exposure to A1221 significantly decreased the number of primordial follicles and the total number of follicles at PND 32 compared to control. Postnatal PCB exposure borderline increased Ki67 gene expression and significantly increased Ki67 protein levels (PND 60) compared to control. Combined prenatal and postnatal PCB exposure borderline decreased Ar expression (PND 8) compared to control. However, PCB exposure did not significantly affect the expression of Pgr, Esr1, and Esr2 or serum estradiol concentrations compared to control at any time point. In conclusion, these data suggest that PCB exposure affects follicle numbers and levels of the proliferation marker Ki67, but it does not affect expression of some sex steroid hormone receptors in the rat ovary.


Assuntos
Bifenilos Policlorados , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Ratos , Animais , Humanos , Bifenilos Policlorados/toxicidade , Ratos Sprague-Dawley , Ovário , Antígeno Ki-67 , Estradiol , Proliferação de Células , Expressão Gênica
8.
Reprod Toxicol ; 118: 108388, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127253

RESUMO

Polychlorinated-biphenyls (PCBs) are industrial compounds, which were widely used in manufacturing of electrical parts and transformers. Despite being banned in 1979 due to human health concerns, they persist in the environment. In humans and experimental model systems, PCBs elicit toxicity in part by acting as endocrine-disrupting chemicals (EDCs). Aroclor 1221 (A1221) is a weakly estrogenic PCB mixture known to alter reproductive function in rodents. EDCs can impact hormone signaling at any level of the hypothalamic-pituitary-gonadal (HPG) axis, and we investigated the effects of A1221 exposure during the prenatal and postnatal developmental periods on pituitary hormone and steroid receptor expression in female rats. Examining offspring at 3 ages, postnatal day 8 (P8), P32 and P60, we found that prenatal exposure to A1221 increased P8 neonate pituitary luteinizing hormone beta (Lhb) mRNA and LHß gonadotrope cell number while decreasing LH serum hormone concentration. No changes in pituitary hormone or hormone receptor gene expression were observed peri-puberty at P32. In reproductively mature rats at P60, we found pituitary follicle stimulating hormone beta (Fshb) mRNA levels increased by prenatal A1221 exposure with no corresponding alterations in FSH hormone or FSHß expressing cell number. Estrogen receptor alpha (ERα) mRNA and protein levels were also increased at P60, but only following postnatal A1221 dosing. Together, these data illustrate that exposure to the PCB A1221, during critical developmental windows, alters pituitary gonadotropin hormone subunits and ERα levels in offspring at different phases of maturation, potentially impacting reproductive function in concert with other components of the HPG axis.


Assuntos
Bifenilos Policlorados , Gravidez , Humanos , Ratos , Feminino , Animais , Bifenilos Policlorados/toxicidade , Receptor alfa de Estrogênio/genética , Maturidade Sexual , Gonadotropinas Hipofisárias/farmacologia , Hormônio Luteinizante Subunidade beta , RNA Mensageiro , Hormônio Foliculoestimulante
9.
Exp Neurol ; 364: 114389, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990138

RESUMO

Gonadotropin hormone release from the anterior pituitary is critical to regulating reproductive endocrine function. Clinical evidence has documented that people with epilepsy display altered levels of gonadotropin hormones, both acutely following seizures and chronically. Despite this relationship, pituitary function remains a largely understudied avenue in preclinical epilepsy research. Recently, we showed that females in the intrahippocampal kainic acid (IHKA) mouse model of temporal lobe epilepsy displayed changes in pituitary expression of gonadotropin hormone and gonadotropin-releasing hormone (GnRH) receptor genes. Circulating gonadotropin hormone levels, however, have yet to be measured in an animal model of epilepsy. Here, we evaluated the circulating levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), GnRH receptor (Gnrhr) gene expression, and sensitivity to exogenous GnRH in IHKA males and females. Although no changes in overall dynamics of pulsatile patterns of LH release were found in IHKA mice of either sex, estrus vs. diestrus changes in basal and mean LH levels were larger in IHKA females with prolonged, disrupted estrous cycles. In addition, IHKA females displayed increased pituitary sensitivity to GnRH and higher Gnrhr expression. The hypersensitivity to GnRH was observed on diestrus, but not estrus. Chronic seizure severity was not found to be correlated with LH parameters, and FSH levels were unchanged in IHKA mice. These results indicate that although there are changes in pituitary gene expression and sensitivity to GnRH in IHKA females, there may also be compensatory mechanisms that aid in maintaining gonadotropin release in the state of chronic epilepsy in this model.


Assuntos
Epilepsia do Lobo Temporal , Hipófise , Masculino , Feminino , Camundongos , Animais , Hipófise/metabolismo , Hormônio Luteinizante , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Foliculoestimulante/metabolismo , Epilepsia do Lobo Temporal/metabolismo
10.
Exp Neurol ; 355: 114118, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597270

RESUMO

Clinical evidence indicates that patients with temporal lobe epilepsy (TLE) often show differential outcomes of comorbid conditions in relation to the lateralization of the seizure focus. A particularly strong relationship exists between the side of seizure focus and the propensity for distinct reproductive endocrine comorbidities in women with TLE. Therefore, here we evaluated whether targeting of left or right dorsal hippocampus for intrahippocampal kainic acid (IHKA) injection, a model of TLE, produces different outcomes in hippocampal granule cell dispersion, body weight gain, and multiple measures of reproductive endocrine dysfunction in female mice. One, two, and four months after IHKA or saline injection, in vivo measurements of estrous cycles and weight were followed by ex vivo examination of hippocampal dentate granule cell dispersion, circulating ovarian hormone and corticosterone levels, ovarian morphology, and pituitary gene expression. IHKA mice with right-targeted injection (IHKA-R) showed greater granule cell dispersion and pituitary Fshb expression compared to mice with left-targeted injection (IHKA-L). By contrast, pituitary expression of Lhb and Gnrhr were higher in IHKA-L mice compared to IHKA-R, but these values were not different from respective saline-injected controls. IHKA-L mice also showed an increased rate of weight gain compared to IHKA-R mice. Increases in estrous cycle length, however, were similar in both IHKA-L and IHKA-R mice. These findings indicate that although major reproductive endocrine dysfunction phenotypes present similarly after targeting left or right dorsal hippocampus for IHKA injection, distinct underlying mechanisms based on lateralization of epileptogenic insult may contribute to produce similar emergent reproductive endocrine outcomes.


Assuntos
Epilepsia do Lobo Temporal , Ácido Caínico , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Ácido Caínico/toxicidade , Camundongos , Fenótipo , Convulsões/metabolismo
11.
Toxicol Sci ; 186(2): 179-189, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-34850235

RESUMO

The hypothalamic-pituitary-gonadal (HPG) axis is the principal modulator of reproductive function. Proper control of this system relies on several hormonal pathways, which make the female reproductive components susceptible to disruption by endocrine-disrupting chemicals such as tributyltin (TBT). Here, we review the relevant research on the associations between TBT exposure and dysfunction of the female HPG axis components. Specifically, TBT reduced hypothalamic gonadotropin-releasing hormone (GnRH) expression and gonadotropin release, and impaired ovarian folliculogenesis, steroidogenesis, and ovulation, at least in part, by causing abnormal sensitivity to steroid feedback mechanisms and deleterious ovarian effects. This review covers studies using environmentally relevant doses of TBT in vitro (1 ng-20 ng/ml) and in vivo (10 ng-20 mg/kg) in mammals. The review also includes discussion of important gaps in the literature and suggests new avenue of research to evaluate the possible mechanisms underlying TBT-induced toxicity in the HPG axis. Overall, the evidence indicates that TBT exposure is associated with toxicity to the components of the female reproductive axis. Further studies are needed to better elucidate the mechanisms through which TBT impairs the ability of the HPG axis to control reproduction.


Assuntos
Compostos de Trialquitina , Animais , Feminino , Gônadas , Sistema Hipotálamo-Hipofisário , Hipotálamo , Mamíferos , Hipófise , Reprodução , Compostos de Trialquitina/toxicidade
12.
Reprod Toxicol ; 108: 18-27, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954075

RESUMO

Phthalates are chemicals used in products including plastics, personal care products, and building materials, leading to widespread contact. Previous studies on prenatal exposure to Di-(2-ethylhexyl) phthalate (DEHP) in mice and humans demonstrated pubertal timing and reproductive performance could be affected in exposed offspring. However, the impacts at the pituitary, specifically regarding signaling pathways engaged and direct effects on the gonadotropins LH and FSH, are unknown. We hypothesized prenatal exposure to DEHP during a critical period of embryonic development (e15.5 to e18.5) will cause sex-specific disruptions in reproduction-related mRNA expression in offspring's pituitary due to interference with androgen and aryl hydrocarbon receptor (AhR) signaling. We found that prenatal DEHP exposure in vivo caused a significant increase in Fshb specifically in males, while the anti-androgen flutamide caused significant increases in both Lhb and Fshb in males. AhR target gene Cyp1b1 was increased in both sexes in DEHP-exposed offspring. In embryonic pituitary cultures, the DEHP metabolite MEHP increased Cyp1a1 and Cyp1b1 mRNA in both sexes and Cyp1b1 induction was reduced by co-treatment with AhR antagonist. AhR reporter assay in GHFT1 cells confirmed MEHP can activate AhR signaling. Lhb, Fshb and Gnrhr mRNA were significantly decreased in both sexes by MEHP, but co-treatment with AhR antagonist did not restore mRNA levels in pituitary culture. In summary, our data suggest phthalates can directly affect the function of the pituitary by activating AhR signaling and altering gonadotropin expression. This indicates DEHP's impacts on the pituitary could contribute to reproductive dysfunctions observed in exposed mice and humans.


Assuntos
Dietilexilftalato/análogos & derivados , Dietilexilftalato/toxicidade , Hipófise/efeitos dos fármacos , Plastificantes/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Expressão Gênica/efeitos dos fármacos , Hormônio Luteinizante Subunidade beta/genética , Masculino , Troca Materno-Fetal , Camundongos , Hipófise/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Reprodução/genética
13.
Toxicol Sci ; 184(1): 46-56, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453833

RESUMO

Iodoacetic acid (IAA) is a water disinfection byproduct (DBP) formed by reactions between oxidizing disinfectants and iodide. In vitro studies have indicated that IAA is one of the most cyto- and genotoxic DBPs. In humans, DBPs have been epidemiologically associated with reproductive dysfunction. In mouse ovarian culture, IAA exposure significantly inhibits antral follicle growth and reduces estradiol production. Despite this evidence, little is known about the effects of IAA on the other components of the reproductive axis: the hypothalamus and pituitary. We tested the hypothesis that IAA disrupts expression of key neuroendocrine factors and directly induces cell damage in the mouse pituitary. We exposed adult female mice to IAA in drinking water in vivo and found 0.5 and 10 mg/l IAA concentrations lead to significantly increased mRNA levels of kisspeptin (Kiss1) in the arcuate nucleus although not affecting Kiss1 in the anteroventral periventricular nucleus. Both 10 mg/l IAA exposure in vivo and 20 µM IAA in vitro reduced follicle stimulating hormone (FSHß)-positive cell number and Fshb mRNA expression. IAA did not alter luteinizing hormone (LHß) expression in vivo although exposure to 20 µM IAA decreased expression of Lhb and glycoprotein hormones, alpha subunit (Cga) mRNA in vitro. IAA also had toxic effects in the pituitary, inducing DNA damage and P21/Cdkn1a expression in vitro (20 µM IAA) and DNA damage and Cdkn1a expression in vivo (500 mg/l). These data implicate IAA as a hypothalamic-pituitary-gonadal axis toxicant and suggest the pituitary is directly affected by IAA exposure.


Assuntos
Desinfecção , Água Potável , Animais , Feminino , Hipotálamo , Ácido Iodoacético/toxicidade , Camundongos , Hipófise
14.
Toxicology ; 427: 152306, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593742

RESUMO

Genistein is an isoflavone abundant in soybean and infants are exposed to high levels of genistein in soy-based formula. It is known that genistein mediates estrogen receptor (ER) signaling, and exposure during neonatal development could cause acute and long term endocrine effects. We assayed genistein's impact on the neonatal mouse pituitary gland because it is an endocrine signaling hub and is sensitive to endocrine disruption during critical periods. Pituitary explant cultures, which actively proliferate and differentiate, were exposed to 0.06 µM-36 µM genistein and assayed for mRNA and protein changes. Genistein induced mRNA expression of the ERα regulated gene, Cckar, to the same magnitude as estradiol (E2) but with less potency. Interestingly, 36 µM genistein strongly inhibited pituitary proliferation, measured by a reduction in mKi67 mRNA and phospho-Histone H3 immunostaining. Examining cell cycle dynamics, we found that 36 µM genistein decreased Ccnb1 (Cyclin B1) mRNA; while mRNA for the cyclin dependent kinase inhibitor Cdkn1a (p21) was upregulated, correlated with an apparent increase in p21 immunostained cells. Strikingly, we observed a robust onset of cellular senescence, permanent cell cycle exit, in 36 µM genistein treated pituitaries by increased senescence activated ß-galactosidase staining. We also found that 36 µM genistein decreased Bcl2 mRNA levels, a gene protective against apoptosis. Taken together these data suggest that genistein exposure during the neonatal period could initiate senescence and halt proliferation during a time when the proper numbers of endocrine cells are being established for mature gland function.


Assuntos
Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Genisteína/farmacologia , Hipófise/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Proteínas de Ciclo Celular/genética , Feminino , Antígeno Ki-67/genética , Masculino , Camundongos , Hipófise/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptor de Colecistocinina A/genética
15.
Elife ; 72018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30589410

RESUMO

The progenitor cells of the developing liver can differentiate toward both hepatocyte and biliary cell fates. In addition to the established roles of TGFß and Notch signaling in this fate specification process, there is increasing evidence that liver progenitors are sensitive to mechanical cues. Here, we utilized microarrayed patterns to provide a controlled biochemical and biomechanical microenvironment for mouse liver progenitor cell differentiation. In these defined circular geometries, we observed biliary differentiation at the periphery and hepatocytic differentiation in the center. Parallel measurements obtained by traction force microscopy showed substantial stresses at the periphery, coincident with maximal biliary differentiation. We investigated the impact of downstream signaling, showing that peripheral biliary differentiation is dependent not only on Notch and TGFß but also E-cadherin, myosin-mediated cell contractility, and ERK. We have therefore identified distinct combinations of microenvironmental cues which guide fate specification of mouse liver progenitors toward both hepatocyte and biliary fates.


Assuntos
Diferenciação Celular , Fígado/embriologia , Células-Tronco/fisiologia , Animais , Células Cultivadas , Camundongos , Modelos Biológicos , Transdução de Sinais , Análise Espacial , Estresse Mecânico
16.
Dev Biol ; 442(1): 87-100, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29885287

RESUMO

The hypothalamic anteroventral periventricular nucleus (AVPV) is the major regulator of reproductive function within the hypothalamic-pituitary-gonadal (HPG) axis. Despite an understanding of the function of neuronal subtypes within the AVPV, little is known about the molecular mechanisms regulating their development. Previous work from our laboratory has demonstrated that Notch signaling is required in progenitor cell maintenance and formation of kisspeptin neurons of the arcuate nucleus (ARC) while simultaneously restraining POMC neuron number. Based on these findings, we hypothesized that the Notch signaling pathway may act similarly in the AVPV by promoting development of kisspeptin neurons at the expense of other neuronal subtypes. To address this hypothesis, we utilized a genetic mouse model with a conditional loss of Rbpj in Nkx2.1 expressing cells (Rbpj cKO). We noted an increase in cellular proliferation, as marked by Ki-67, in the hypothalamic ventricular zone (HVZ) in Rbpj cKO mice at E13.5. This corresponded to an increase in general neurogenesis and more TH-positive neurons. Additionally, an increase in OLIG2-positive early oligodendrocytic precursor cells was observed at postnatal day 0 in Rbpj cKO mice. By 5 weeks of age in Rbpj cKO mice, TH-positive cells were readily detected in the AVPV but few kisspeptin neurons were present. To elucidate the direct effects of Notch signaling on neuron and glia differentiation, an in vitro primary hypothalamic neurosphere assay was employed. We demonstrated that treatment with the chemical Notch inhibitor DAPT increased mKi67 and Olig2 mRNA expression while decreasing astroglial Gfap expression, suggesting Notch signaling regulates both proliferation and early glial fate decisions. A modest increase in expression of TH in both the cell soma and neurite extensions was observed after extended culture, suggesting that inhibition of Notch signaling alone is enough to bias progenitors towards a dopaminergic fate. Together, these data suggest that Notch signaling restricts early cellular proliferation and differentiation of neurons and oligodendrocytes both in vivo and in vitro and acts as a fate selector of kisspeptin neurons.


Assuntos
Hipotálamo Anterior/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Receptores Notch/fisiologia , Animais , Núcleo Hipotalâmico Anterior/metabolismo , Núcleo Arqueado do Hipotálamo/citologia , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Feminino , Hipotálamo/metabolismo , Hipotálamo Anterior/crescimento & desenvolvimento , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Kisspeptinas/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores Notch/genética , Transdução de Sinais/fisiologia
17.
Behav Brain Res ; 349: 16-24, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29715538

RESUMO

Adolescents and females experience worse outcomes of drug use compared to adults and males. This could result from age- and sex-specific consequences of drug exposure on brain function and cognitive behavior. In the current study, we examined whether a history of intravenous methamphetamine (METH) self-administration impacted cognitive flexibility and 5-HT2CR localization in the orbitofrontal cortex (OFC) in an age- and sex-dependent manner. Strategy shifting was assessed in male and female Sprague-Dawley rats that had self-administered METH (0.08 mg/kg/inf) or received non-contingent infusions of saline during periadolescence or young adulthood. After all rats reached adulthood, they were tested in an operant strategy shifting task and their brains were subsequently analyzed using immunofluorescence to quantify co-localization of 5-HT2C receptors with parvalbumin interneurons in the OFC. We found that adolescent-onset females were the only group impaired during discrimination and reversal learning, but they did not exhibit changes in localization of 5-HT2C receptors. In contrast, adult-onset males exhibited a significant increase in co-localization of 5-HT2C receptors within parvalbumin interneurons in the left hemisphere of the OFC. These studies reveal that age and sex differences in drug-induced deficits in reversal learning and 5-HT2CR co-localization with parvalbumin interneurons are dissociable and can manifest independently. In addition, these data highlight the potential for certain treatment approaches to be more suitable in some populations compared to others, such as alleviating drug-induced cognitive deficits as a focus for treatment in adolescent females.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Estimulantes do Sistema Nervoso Central/administração & dosagem , Função Executiva/efeitos dos fármacos , Metanfetamina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/metabolismo , Administração Intravesical , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Transtornos Relacionados ao Uso de Anfetaminas/patologia , Transtornos Relacionados ao Uso de Anfetaminas/psicologia , Animais , Discriminação Psicológica/efeitos dos fármacos , Discriminação Psicológica/fisiologia , Função Executiva/fisiologia , Feminino , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Ratos Sprague-Dawley , Reversão de Aprendizagem/efeitos dos fármacos , Reversão de Aprendizagem/fisiologia , Autoadministração , Caracteres Sexuais , Maturidade Sexual
18.
Biol Reprod ; 99(3): 504-513, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29757344

RESUMO

The coordination of pituitary development is complicated and requires input from multiple cellular processes. Recent research has provided insight into key molecular determinants that govern cell fate specification in the pituitary. Moreover, increasing research aimed to identify, characterize, and functionally describe the presumptive pituitary stem cell population has allowed for a better understanding of the processes that govern endocrine cell differentiation in the developing pituitary. The culmination of this research has led to the ability of investigators to recapitulate some of embryonic pituitary development in vitro, the first steps to developing novel regenerative therapies for pituitary diseases. In this current review, we cover the major players in pituitary stem/progenitor cell function and maintenance, and the key molecular determinants of endocrine cell specification. In addition, we discuss the contribution of peripheral hormonal regulation of pituitary gland development, an understudied area of research.


Assuntos
Hipófise/embriologia , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular , Feminino , Expressão Gênica , Gonadotropinas Hipofisárias/biossíntese , Hormônio do Crescimento/biossíntese , Humanos , Camundongos , Células-Tronco Multipotentes/citologia , Hipófise/citologia , Gravidez , Prolactina/biossíntese , Células-Tronco/citologia , Tireotropina/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
19.
G3 (Bethesda) ; 8(3): 859-873, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29378821

RESUMO

Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes (Vulpes vulpes). RNA was sequenced from the anterior pituitary of six foxes selectively bred for tameness ("tame foxes") and six foxes selectively bred for aggression ("aggressive foxes"). Expression, splicing, and network differences identified between the two lines indicated the importance of genes related to regulation of exocytosis, specifically mediated by cAMP, organization of pseudopodia, and cell motility. These findings provide new insights into biological mechanisms that may have been targeted when these lines of foxes were selected for behavior and suggest new directions for research into HPA axis regulation and the biological underpinnings of domestication.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Agressão , Comportamento Animal , Raposas/genética , Raposas/metabolismo , Adeno-Hipófise/metabolismo , Transcriptoma , Processamento Alternativo , Animais , Biologia Computacional/métodos , Domesticação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal
20.
Endocrinology ; 159(1): 119-131, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092056

RESUMO

Critical windows of development are often more sensitive to endocrine disruption. The murine pituitary gland has two critical windows of development: embryonic gland establishment and neonatal hormone cell expansion. During embryonic development, one environmentally ubiquitous endocrine-disrupting chemical, bisphenol A (BPA), has been shown to alter pituitary development by increasing proliferation and gonadotrope number in females but not males. However, the effects of exposure during the neonatal period have not been examined. Therefore, we dosed pups from postnatal day (PND)0 to PND7 with 0.05, 0.5, and 50 µg/kg/d BPA, environmentally relevant doses, or 50 µg/kg/d estradiol (E2). Mice were collected after dosing at PND7 and at 5 weeks. Dosing mice neonatally with BPA caused sex-specific gene expression changes distinct from those observed with embryonic exposure. At PND7, pituitary Pit1 messenger RNA (mRNA) expression was decreased with BPA 0.05 and 0.5 µg/kg/d in males only. Expression of Pomc mRNA was decreased at 0.5 µg/kg/d BPA in males and at 0.5 and 50 µg/kg/d BPA in females. Similarly, E2 decreased Pomc mRNA in both males and females. However, no noticeable corresponding changes were found in protein expression. Both E2 and BPA suppressed Pomc mRNA in pituitary organ cultures; this repression appeared to be mediated by estrogen receptor-α and estrogen receptor-ß in females and G protein-coupled estrogen receptor in males, as determined by estrogen receptor subtype-selective agonists. These data demonstrated that BPA exposure during neonatal pituitary development has unique sex-specific effects on gene expression and that Pomc repression in males and females can occur through different mechanisms.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fenóis/toxicidade , Hipófise/efeitos dos fármacos , Pró-Opiomelanocortina/antagonistas & inibidores , Desenvolvimento Sexual/efeitos dos fármacos , Fator de Transcrição Pit-1/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos Endogâmicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Técnicas de Cultura de Órgãos , Tamanho do Órgão/efeitos dos fármacos , Especificidade de Órgãos , Hipófise/metabolismo , Hipófise/patologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Distribuição Aleatória , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Caracteres Sexuais , Fator de Transcrição Pit-1/genética , Fator de Transcrição Pit-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA