Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5471, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443610

RESUMO

Plant community assembly is the outcome of long-term evolutionary events (evident as taxonomic diversity; TD) and immediate adaptive fitness (functional diversity; FD); a balance expected to shift in favour of FD in 'harsh' habitats under intense selection pressures. We compared TD and FD responses along climatic and edaphic gradients for communities of two species (Dianthus pseudocrinitus and D. polylepis) endemic to the montane steppes of the Khorassan-Kopet Dagh floristic province, NE Iran. 75 plots at 15 sites were used to relate TD and FD to environmental gradients. In general, greater TD was associated with variation in soil factors (potassium, lime, organic matter contents), whereas FD was constrained by aridity (drought adaptation). Crucially, even plant communities hosting different subspecies of D. polylepis responded differently to aridity: D. polylepis subsp. binaludensis communities included a variety of broadly stress-tolerant taxa with no clear environmental response, but TD of D. polylepis subsp. polylepis communities was directly related to precipitation, with consistently low FD reflecting a few highly specialized stress-tolerators. Integrating taxonomic and functional diversity metrics is essential to understand the communities hosting even extremely closely related taxa, which respond idiosyncratically to climate and soil gradients.


Assuntos
Dianthus , Rosaceae , Benchmarking , Evolução Biológica , Secas , Solo
3.
Sci Rep ; 12(1): 9022, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637253

RESUMO

Climate and soil factors induce substantial controls over plant biodiversity in stressful ecosystems. Despite of some studies on plant biodiversity in extreme ecosystems including rocky outcrops, simultaneous effects of climate and soil factors have rarely been studied on different facets of biodiversity including taxonomic and functional diversity in these ecosystems. In addition, we know little about plant biodiversity variations in such extreme ecosystems compared to natural environments. It seems that environmental factors acting in different spatial scales specifically influence some facets of plant biodiversity. Therefore, we studied changes in taxonomic and functional diversity along precipitation and soil gradients in both landscapes (i) rocky outcrops and (ii) their nearby rangeland sites in northeast of Iran. In this regard, we considered six sites across precipitation and soil gradients in each landscape, and established 90 1m2 quadrates in them (i.e. 15 quadrats in each site; 15 × 6 = 90 in each landscape). Then, taxonomic and functional diversity were measured using RaoQ index, FDis and CWM indices. Finally, we assessed impacts of precipitation and soil factors on biodiversity indices in both landscapes by performing regression models and variation partitioning procedure. The patterns of taxonomic diversity similarly showed nonlinear changes along the precipitation and soil factors in both landscapes (i.e. outcrop and rangeland). However, we found a more negative and significant trends of variation in functional diversity indices (except for CWMSLA) across precipitation and soil factors in outcrops than their surrounding rangelands. Variations of plant biodiversity were more explained by precipitation factors in surrounding rangelands, whereas soil factors including organic carbon had more consistent and significant effects on plant biodiversity in outcrops. Therefore, our results represent important impacts of soil factors in structuring plant biodiversity facets in stressful ecosystems. While, environmental factors acting in regional and broad scales such as precipitation generally shape vegetation and plant biodiversity patterns in natural ecosystems. We can conclude that rocky outcrops provide suitable microenvironments to present plant species with similar yields that are less able to be present in rangeland ecosystems.


Assuntos
Ecossistema , Solo , Biodiversidade , Clima , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA