Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Immunother Cancer ; 12(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009451

RESUMO

BACKGROUND: Cervical cancer's lymphatic spread primarily begins from the sentinel lymph nodes (SLNs), underlining their pivotal role in disease metastasis. However, these nodes' immune gene expression profiles and immunoregulation mechanisms have yet to be explored. METHODS: Our study aimed to elucidate the immune cell populations and their roles in the immune gene expression profile of negative SLNs compared with positive SLNs and non-SLNs using Nanostring RNA seq analysis. We performed a principal component analysis on the log2 normalized expression of 685 endogenous genes in the nCounter PanCancer Immune Profiling Panel, followed by an assessment of the differential expression of genes and immune cell type abundance. RESULTS: We found significant variations in gene expression among the groups, with negative SLNs displaying overexpression of genes related to tumor-infiltrating immune cells, specifically innate cell populations. They also demonstrated the upregulation of genes involved in antigen presentation and T-cell priming. In contrast, positive SLNs were enriched in regulatory networks, suggesting their potential role in immune evasion. A comparison of negative SLNs and non-SLNs revealed increased innate and adaptive immune cell types, underscoring the ongoing T cell response to tumor antigens. CONCLUSION: Our findings underscore a specific immunogenetic phenotype profile in negative SLNs, emphasizing their crucial role in the initial anticancer response, immunosurveillance, and the propagation of immune tolerance from the primary cervical tumor. These results highlight the potential of SLNs as a novel target for immunotherapy strategies and underscore the importance of new imaging methods for accurately identifying SLN status without removal. Future investigations are needed to understand further the immunological interplay within SLNs and their influence on cervical cancer progression.


Assuntos
Linfonodo Sentinela , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Linfonodo Sentinela/patologia , Linfonodo Sentinela/imunologia , Imunogenética/métodos , Pessoa de Meia-Idade , Metástase Linfática , Biópsia de Linfonodo Sentinela/métodos
2.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430649

RESUMO

Ovarian cancer (OC) is a heterogeneous disease characterized by its late diagnosis (FIGO stages III and IV) and the importance of abdominal metastases often observed at diagnosis. Detached ovarian cancer cells (OCCs) float in ascites and form multicellular spheroids. Here, we developed endothelial cell (EC)-based 3D spheroids to better represent in vivo conditions. When co-cultured in 3D conditions, ECs and OCCs formed organized tumor angiospheres with a core of ECs surrounded by proliferating OCCs. We established that Akt and Notch3/Jagged1 pathways played a role in angiosphere formation and peritoneum invasion. In patients' ascites we found angiosphere-like structures and demonstrated in patients' specimens that tumoral EC displayed Akt activation, which supports the importance of Akt activation in ECs in OC. Additionally, we demonstrated the importance of FGF2, Pentraxin 3 (PTX3), PD-ECGF and TIMP-1 in angiosphere organization. Finally, we confirmed the role of Notch3/Jagged1 in OCC-EC crosstalk relating to OCC proliferation and during peritoneal invasion. Our results support the use of multicellular spheroids to better model tumoral and stromal interaction. Such models could help decipher the complex pathways playing critical roles in metastasis spread and predict tumor response to chemotherapy or anti-angiogenic treatment.


Assuntos
Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-akt , Feminino , Humanos , Ascite/patologia , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células , Endotélio/metabolismo , Organoides/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resistencia a Medicamentos Antineoplásicos
3.
J Transl Med ; 20(1): 244, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619151

RESUMO

BACKGROUND: Mutated and non-mutated genes interact to drive cancer growth and metastasis. While research has focused on understanding the impact of mutated genes on cancer biology, understanding non-mutated genes that are essential to tumor development could lead to new therapeutic strategies. The recent advent of high-throughput whole genome sequencing being applied to many different samples has made it possible to calculate if genes are significantly non-mutated in a specific cancer patient cohort. METHODS: We carried out random mutagenesis simulations of the human genome approximating the regions sequenced in the publicly available Cancer Growth Atlas Project for ovarian cancer (TCGA-OV). Simulated mutations were compared to the observed mutations in the TCGA-OV cohort and genes with the largest deviations from simulation were identified. Pathway analysis was performed on the non-mutated genes to better understand their biological function. We then compared gene expression, methylation and copy number distributions of non-mutated and mutated genes in cell lines and patient data from the TCGA-OV project. To directly test if non-mutated genes can affect cell proliferation, we carried out proof-of-concept RNAi silencing experiments of a panel of nine selected non-mutated genes in three ovarian cancer cell lines and one primary ovarian epithelial cell line. RESULTS: We identified a set of genes that were mutated less than expected (non-mutated genes) and mutated more than expected (mutated genes). Pathway analysis revealed that non-mutated genes interact in cancer associated pathways. We found that non-mutated genes are expressed significantly more than mutated genes while also having lower methylation and higher copy number states indicating that they could be functionally important. RNAi silencing of the panel of non-mutated genes resulted in a greater significant reduction of cell viability in the cancer cell lines than in the non-cancer cell line. Finally, as a test case, silencing ANKLE2, a significantly non-mutated gene, affected the morphology, reduced migration, and increased the chemotherapeutic response of SKOV3 cells. CONCLUSION: We show that we can identify significantly non-mutated genes in a large ovarian cancer cohort that are well-expressed in patient and cell line data and whose RNAi-induced silencing reduces viability in three ovarian cancer cell lines. Targeting non-mutated genes that are important for tumor growth and metastasis is a promising approach to expand cancer therapeutic options.


Assuntos
Neoplasias Ovarianas , Sequência de Bases , Carcinoma Epitelial do Ovário/genética , Feminino , Genoma , Humanos , Mutação/genética , Neoplasias Ovarianas/genética
4.
J Clin Med ; 11(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35329958

RESUMO

An alteration in circulating miRNAs may have important diagnostic and therapeutic relevance in diabetic neuropathy. Patients with type 2 diabetes mellitus (T2DM) underwent an assessment of neuropathic symptoms using Douleur Neuropathique 4 (DN4), the vibration perception threshold (VPT) using a Neurothesiometer, sudomotor function using the Sudoscan, corneal nerve morphology using corneal confocal microscopy (CCM) and circulating miRNAs using high-throughput miRNA expression profiling. Patients with T2DM, with (n = 9) and without (n = 7) significant corneal nerve loss were comparable in age, gender, diabetes duration, BMI, HbA1c, eGFR, blood pressure, and lipid profile. The VPT was significantly higher (p < 0.05), and electrochemical skin conductance (p < 0.05), corneal nerve fiber density (p = 0.001), corneal nerve branch density (p = 0.013), and corneal nerve fiber length (p < 0.001) were significantly lower in T2DM patients with corneal nerve loss compared to those without corneal nerve loss. Following a q-PCR-based analysis of total plasma microRNAs, we found that miR-92b-3p (p = 0.008) was significantly downregulated, while miR-22-3p (p = 0.0001) was significantly upregulated in T2DM patients with corneal nerve loss. A network analysis revealed that these miRNAs regulate axonal guidance and neuroinflammation genes. These data support the need for more extensive studies to better understand the role of dysregulated miRNAs' in diabetic neuropathy.

5.
Cardiovasc Diabetol ; 21(1): 17, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109843

RESUMO

BACKGROUND: Elevated endothelial microparticles (EMPs) levels are surrogate markers of vascular dysfunction. We analyzed EMPs with apoptotic characteristics and assessed the angiogenic contents of microparticles in the blood of patients with type 2 diabetes (T2D) according to the presence of coronary artery disease (CAD). METHODS: A total of 80 participants were recruited and equally classified as (1) healthy without T2D, (2) T2D without cardiovascular complications, (3) T2D and chronic coronary artery disease (CAD), and (4) T2D and acute coronary syndrome (ACS). MPs were isolated from the peripheral circulation, and EMPs were characterized using flow cytometry of CD42 and CD31. CD62E was used to determine EMPs' apoptotic/activation state. MPs content was extracted and profiled using an angiogenesis array. RESULTS: Levels of CD42- CD31 + EMPs were significantly increased in T2D with ACS (257.5 ± 35.58) when compared to healthy subjects (105.7 ± 12.96, p < 0.01). There was no significant difference when comparing T2D with and without chronic CAD. The ratio of CD42-CD62 +/CD42-CD31 + EMPs was reduced in all T2D patients, with further reduction in ACS when compared to chronic CAD, reflecting a release by apoptotic endothelial cells. The angiogenic content of the full population of MPs was analyzed. It revealed a significant differential expression of 5 factors in patients with ACS and diabetes, including TGF-ß1, PD-ECGF, platelet factor 4, serpin E1, and thrombospondin 1. Ingenuity Pathway Analysis revealed that those five differentially expressed molecules, mainly TGF-ß1, inhibit key pathways involved in normal endothelial function. Further comparison of the three diabetes groups to healthy controls and diabetes without cardiovascular disease to diabetes with CAD identified networks that inhibit normal endothelial cell function. Interestingly, DDP-IV was the only differentially expressed protein between chronic CAD and ACS in patients with diabetes. CONCLUSION: Our data showed that the release of apoptosis-induced EMPs is increased in diabetes, irrespective of CAD, ACS patients having the highest levels. The protein contents of MPs interact in networks that indicate vascular dysfunction.


Assuntos
Síndrome Coronariana Aguda/sangue , Proteínas Angiogênicas/sangue , Micropartículas Derivadas de Células/metabolismo , Doença da Artéria Coronariana/sangue , Diabetes Mellitus Tipo 2/sangue , Endotélio Vascular/metabolismo , Neovascularização Patológica , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/fisiopatologia , Adulto , Idoso , Apoptose , Biomarcadores/sangue , Estudos de Casos e Controles , Micropartículas Derivadas de Células/patologia , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/fisiopatologia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/fisiopatologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Mapas de Interação de Proteínas , Proteômica , Transdução de Sinais
6.
Ann Plast Surg ; 88(1): 25-31, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34176903

RESUMO

OBJECTIVE: To date, breast reconstruction after mastectomy essentially uses flap- or prosthetic-based surgery. Autologous fat grafting (AFT) largely used in breast conservative surgery is considered an additional technique in breast reconstruction. The aim of this retrospective study was to report our experience of AFT as a stand-alone method for immediate breast reconstruction. PATIENTS AND METHODS: Fifteen patients requiring a radical mastectomy underwent AFT for immediate reconstruction since 2014. Previous breast irradiation was not a contraindication. Procedures, complications, and cosmetic results were retrospectively analyzed. RESULTS: Fifteen patients with an average age of 60.5 (43-78) years were included in this retrospective study. They had a body mass index ranging from 19 to 40. Fourteen had a mastectomy for cancer and 1 for prophylaxis. Nine received breast irradiation (7 before surgery and 2 adjuvant). A mean of 3 (2-6) AFT procedures were required to achieve total breast reconstruction. Except for the first transfer, others were performed as outpatient surgeries. Only 2 minor complications (1 hematoma and 1 abscess) not impairing results were reported. The results after a mean follow-up of 26 months were considered by the patients and surgeon as highly satisfactory even in previously irradiated breast, as assessed using a qualitative scoring analysis. CONCLUSIONS: Autologous fat grafting as a stand-alone method for immediate breast reconstruction after radical mastectomy is a safe procedure with very consistent results even for patients requiring radiation therapy.


Assuntos
Neoplasias da Mama , Mamoplastia , Tecido Adiposo , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Feminino , Humanos , Mastectomia , Mastectomia Radical , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos
7.
Clin Exp Metastasis ; 39(2): 345-362, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34921655

RESUMO

Metastasis is the primary cause of cancer related deaths due to the limited number of efficient druggable targets. Signatures of dysregulated cancer metabolism could serve as a roadmap for the determination of new treatment strategies. However, the metabolic signatures of metastatic cells remain vastly elusive. Our aim was to determine metabolic dysregulations associated with high metastatic potential in breast cancer cell lines. We have selected 5 triple negative breast cancer (TNBC) cell lines including three with high metastatic potential (HMP) (MDA-MB-231, MDA-MB-436, MDA-MB-468) and two with low metastatic potential (LMP) (BT549, HCC1143). The normal epithelial breast cell line (hTERT-HME1) was also investigated. The untargeted metabolic profiling of cells and growth media was conducted and total of 479 metabolites were quantified. First we characterized metabolic features differentiating TNBC cell lines from normal cells as well as identified cell line specific metabolic fingerprints. Next, we determined 92 metabolites in cells and 22 in growth medium that display significant differences between LMP and HMP. The HMP cell lines had elevated level of molecules involved in glycolysis, TCA cycle and lipid metabolism. We identified metabolic advantages of cell lines with HMP beyond enhanced glycolysis by pinpointing the role of branched chain amino acids (BCAA) catabolism as well as molecules supporting coagulation and platelet activation as important contributors to the metastatic cascade. The landscape of metabolic dysregulations, characterized in our study, could serve as a roadmap for the identification of treatment strategies targeting cancer cells with enhanced metastatic potential.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Humanos , Neoplasias de Mama Triplo Negativas/patologia
8.
Sci Rep ; 11(1): 8177, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854178

RESUMO

The NAD+-dependent deacetylase SIRT1 controls key metabolic functions by deacetylating target proteins and strategies that promote SIRT1 function such as SIRT1 overexpression or NAD+ boosters alleviate metabolic complications. We previously reported that SIRT1-depletion in 3T3-L1 preadipocytes led to C-Myc activation, adipocyte hyperplasia, and dysregulated adipocyte metabolism. Here, we characterized SIRT1-depleted adipocytes by quantitative mass spectrometry-based proteomics, gene-expression and biochemical analyses, and mitochondrial studies. We found that SIRT1 promoted mitochondrial biogenesis and respiration in adipocytes and expression of molecules like leptin, adiponectin, matrix metalloproteinases, lipocalin 2, and thyroid responsive protein was SIRT1-dependent. Independent validation of the proteomics dataset uncovered SIRT1-dependence of SREBF1c and PPARα signaling in adipocytes. SIRT1 promoted nicotinamide mononucleotide acetyltransferase 2 (NMNAT2) expression during 3T3-L1 differentiation and constitutively repressed NMNAT1 and 3 levels. Supplementing preadipocytes with the NAD+ booster nicotinamide mononucleotide (NMN) during differentiation increased expression levels of leptin, SIRT1, and PGC-1α and its transcriptional targets, and reduced levels of pro-fibrotic collagens (Col6A1 and Col6A3) in a SIRT1-dependent manner. Investigating the metabolic impact of the functional interaction of SIRT1 with SREBF1c and PPARα and insights into how NAD+ metabolism modulates adipocyte function could potentially lead to new avenues in developing therapeutics for obesity complications.


Assuntos
Adipogenia , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Animais , Diferenciação Celular , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mononucleotídeo de Nicotinamida/farmacologia , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Proteômica
9.
Antioxidants (Basel) ; 10(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672392

RESUMO

Obesity promotes premature aging and dysfunction of white adipose tissue (WAT) through the accumulation of cellular senescence. The senescent cells burden in WAT has been linked to inflammation, insulin-resistance (IR), and type 2 diabetes (T2D). There is limited knowledge about molecular mechanisms that sustain inflammation in obese states. Here, we describe a robust and physiologically relevant in vitro system to trigger senescence in mouse 3T3-L1 preadipocytes. By employing transcriptomics analyses, we discovered up-regulation of key pro-inflammatory molecules and activation of interferon/signal transducer and activator of transcription (STAT)1/3 signaling in senescent preadipocytes, and expression of downstream targets was induced in epididymal WAT of obese mice, and obese human adipose tissue. To test the relevance of STAT1/3 signaling to preadipocyte senescence, we used Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology to delete STAT1/3 and discovered that STAT1 promoted growth arrest and cooperated with cyclic Guanosine Monophosphate-Adenosine Monophosphate (GMP-AMP) synthase-stimulator of interferon genes (cGAS-STING) to drive the expression of interferon ß (IFNß), C-X-C motif chemokine ligand 10 (CXCL10), and interferon signaling-related genes. In contrast, we discovered that STAT3 was a negative regulator of STAT1/cGAS-STING signaling-it suppressed senescence and inflammation. These data provide insights into how STAT1/STAT3 signaling coordinates senescence and inflammation through functional interactions with the cGAS/STING pathway.

10.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33529170

RESUMO

The development of prophylactic and therapeutic agents for coronavirus disease 2019 (COVID-19) is a current global health priority. Here, we investigated the presence of cross-neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dromedary camels that were Middle East respiratory syndrome coronavirus (MERS-CoV) seropositive but MERS-CoV free. The tested 229 dromedaries had anti-MERS-CoV camel antibodies with variable cross-reactivity patterns against SARS-CoV-2 proteins, including the S trimer and M, N, and E proteins. Using SARS-CoV-2 competitive immunofluorescence immunoassays and pseudovirus neutralization assays, we found medium-to-high titers of cross-neutralizing antibodies against SARS-CoV-2 in these animals. Through linear B cell epitope mapping using phage immunoprecipitation sequencing and a SARS-CoV-2 peptide/proteome microarray, we identified a large repertoire of Betacoronavirus cross-reactive antibody specificities in these dromedaries and demonstrated that the SARS-CoV-2-specific VHH antibody repertoire is qualitatively diverse. This analysis revealed not only several SARS-CoV-2 epitopes that are highly immunogenic in humans, including a neutralizing epitope, but also epitopes exclusively targeted by camel antibodies. The identified SARS-CoV-2 cross-neutralizing camel antibodies are not proposed as a potential treatment for COVID-19. Rather, their presence in nonimmunized camels supports the development of SARS-CoV-2 hyperimmune camels, which could be a prominent source of therapeutic agents for the prevention and treatment of COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Camelus/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/farmacologia , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , COVID-19/imunologia , Camelus/virologia , Reações Cruzadas , Epitopos , Feminino , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia
11.
J Pregnancy ; 2020: 4592450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062333

RESUMO

With the emergence of SARS-CoV-2 and its rapid spread, concerns regarding its effects on pregnancy outcomes have been growing. We reviewed 245 pregnancies complicated by maternal SARS-CoV-2 infection across 48 studies listed on PubMed and MedRxiv. The most common clinical presentations were fever (55.9%), cough (36.3%), fatigue (11.4%), and dyspnea (12.7%). Only 4.1% of patients developed respiratory distress. Of all patients, 89.0% delivered via cesarean section (n = 201), with a 33.3% rate of gestational complications, a 35.3% rate of preterm delivery, and a concerning 2.5% rate of stillbirth delivery or neonatal death. Among those tested, 6.45% of newborns were reported positive for SARS-CoV-2 infection. Relative to known viral infections, the prognosis for pregnant women with SARS-CoV-2 is good, even in the absence of specific antiviral treatment. However, neonates and acute patients, especially those with gestational or preexisting comorbidities, must be actively managed to prevent the severe outcomes being increasingly reported in the literature.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Complicações Infecciosas na Gravidez/epidemiologia , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/terapia , Feminino , Humanos , Recém-Nascido , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/terapia , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico , Complicações Infecciosas na Gravidez/terapia , Resultado da Gravidez , SARS-CoV-2
12.
BMC Med Genet ; 21(1): 182, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943010

RESUMO

BACKGROUND: Mandibulofacial dysostosis with microcephaly (MFDM) is a rare autosomal dominant genetic disease characterized by intellectual and growth retardations, as well as major microcephaly, induced by missense and splice site variants or microdeletions in the EFTUD2 gene. CASE PRESENTATION: Here, we investigate the case of a young girl with symptoms of MFDM and a normal karyotype. Whole-exome sequencing of the family was performed to identify genetic alterations responsible for this phenotype. We identified a de novo synonymous variant in the EFTUD2 gene. We demonstrated that this synonymous variant disrupts the donor splice-site in intron 9 resulting in the skipping of exon 9 and a frameshift that leads to a premature stop codon. CONCLUSIONS: We present the first case of MFDM caused by a synonymous variant disrupting the donor splice site, leading to exon skipping.


Assuntos
Disostose Mandibulofacial/genética , Microcefalia/genética , Mutação , Fatores de Alongamento de Peptídeos/genética , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U5/genética , Sequência de Bases , Criança , Feminino , Humanos , Cariótipo , Fenótipo
14.
J Transl Med ; 18(1): 52, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014047

RESUMO

The concept of cancer as a cell-autonomous disease has been challenged by the wealth of knowledge gathered in the past decades on the importance of tumor microenvironment (TM) in cancer progression and metastasis. The significance of endothelial cells (ECs) in this scenario was initially attributed to their role in vasculogenesis and angiogenesis that is critical for tumor initiation and growth. Nevertheless, the identification of endothelial-derived angiocrine factors illustrated an alternative non-angiogenic function of ECs contributing to both physiological and pathological tissue development. Gene expression profiling studies have demonstrated distinctive expression patterns in tumor-associated endothelial cells that imply a bilateral crosstalk between tumor and its endothelium. Recently, some of the molecular determinants of this reciprocal interaction have been identified which are considered as potential targets for developing novel anti-angiocrine therapeutic strategies.


Assuntos
Células Endoteliais , Neoplasias , Microambiente Tumoral , Endotélio , Humanos , Neoplasias/genética , Neovascularização Patológica
16.
Mol Cell Proteomics ; 18(10): 1950-1966, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31332097

RESUMO

Mesenchymal stem/stromal cells (MSCs) are self-renewing multipotent cells with regenerative, secretory and immunomodulatory capabilities that are beneficial for the treatment of various diseases. To avoid the issues that come with using tissue-derived MSCs in therapy, MSCs may be generated by the differentiation of human embryonic stems cells (hESCs) in culture. However, the changes that occur during the differentiation process have not been comprehensively characterized. Here, we combined transcriptome, proteome and phosphoproteome profiling to perform an in-depth, multi-omics study of the hESCs-to-MSCs differentiation process. Based on RNA-to-protein correlation, we determined a set of high confidence genes that are important to differentiation. Among the earliest and strongest induced proteins with extensive differential phosphorylation was AHNAK, which we hypothesized to be a defining factor in MSC biology. We observed two distinct expression waves of developmental HOX genes and an AGO2-to-AGO3 switch in gene silencing. Exploring the kinetic of noncoding ORFs during differentiation, we mapped new functions to well annotated long noncoding RNAs (CARMN, MALAT, NEAT1, LINC00152) as well as new candidates which we identified to be important to the differentiation process. Phosphoproteome analysis revealed ESC and MSC-specific phosphorylation motifs with PAK2 and RAF1 as top predicted upstream kinases in MSCs. Our data represent a rich systems-level resource on ESC-to-MSC differentiation that will be useful for the study of stem cell biology.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Mesenquimais/citologia , Proteômica/métodos , Diferenciação Celular , Células Cultivadas , Cromatografia Líquida , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Espectrometria de Massas , Células-Tronco Mesenquimais/metabolismo , Fosforilação , Mapas de Interação de Proteínas , Análise de Sequência de RNA
17.
BMC Cancer ; 19(1): 565, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185953

RESUMO

BACKGROUND: Circular RNAs (circRNAs) that form through non-canonical backsplicing events of pre-mRNA transcripts are evolutionarily conserved and abundantly expressed across species. However, the functional relevance of circRNAs remains a topic of debate. METHODS: We identified one of the highly expressed circRNA (circANKRD12) in cancer cell lines and characterized it validated it by Sanger sequencing, Real-Time PCR. siRNA mediated silencing of the circular junction of circANKRD12 was followed by RNA Seq analysis of circANKRD12 silenced cells and control cells to identify the differentially regulated genes. A series of cell biology and molecular biology techniques (MTS assay, Migration analysis, 3D organotypic models, Real-Time PCR, Cell cycle analysis, Western blot analysis, and Seahorse Oxygen Consumption Rate analysis) were performed to elucidate the function, and underlying mechanisms involved in circANKRD12 silenced breast and ovarian cancer cells. RESULTS: In this study, we identified and characterized a circular RNA derived from Exon 2 and Exon 8 of the ANKRD12 gene, termed here as circANKRD12. We show that this circRNA is abundantly expressed in breast and ovarian cancers. The circANKRD12 is RNase R resistant and predominantly localized in the cytoplasm in contrast to its source mRNA. We confirmed the expression of this circRNA across a variety of cancer cell lines and provided evidence for its functional relevance through downstream regulation of several tumor invasion genes. Silencing of circANKRD12 induces a strong phenotypic change by significantly regulating cell cycle, increasing invasion and migration and altering the metabolism in cancer cells. These results reveal the functional significance of circANKRD12 and provide evidence of a regulatory role for this circRNA in cancer progression. CONCLUSIONS: Our study demonstrates the functional relevance of circANKRD12 in various cancer cell types and, based on its expression pattern, has the potential to become a new clinical biomarker.


Assuntos
Inativação Gênica , Invasividade Neoplásica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Circular/genética , Biomarcadores Tumorais/genética , Mama/citologia , Neoplasias da Mama/patologia , Movimento Celular , Ciclina D1/metabolismo , Éxons/genética , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/citologia , Neoplasias Pulmonares/patologia , Células MCF-7 , Fenótipo , RNA Interferente Pequeno/genética , Transfecção
18.
J Transl Med ; 17(1): 194, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182109

RESUMO

BACKGROUND: One main challenge in ovarian cancer rests on the presence of a relapse and an important metastatic disease, despite extensive surgical debulking and chemotherapy. The difficulty in containing metastatic cancer is partly due to the heterotypic interaction of tumor and its microenvironment. In this context, evidence suggests that endothelial cells (EC) play an important role in ovarian tumor growth and chemoresistance. Here, we studied the role of tumor endothelium on ovarian cancer cells (OCCs). METHODS: We evaluated the effect of activated endothelial cells on ovarian cancer cell proliferation and resistance to chemotherapy and investigated the survival pathways activated by endothelial co-culture. RESULTS: The co-culture between OCCs and E4+ECs, induced an increase of OCCs proliferation both in vitro and in vivo. This co-culture induced an increase of Notch receptors expression on OCC surface and an increase of Jagged 1 expression on E4+ECs surface and activation of survival pathways leading to chemoresistance by E4+ECs. CONCLUSION: The targeting of aberrant NOTCH signaling could constitute a strategy to disrupt the pro-tumoral endothelial niche.


Assuntos
Carcinoma Epitelial do Ovário/patologia , Proliferação de Células , Endotélio/patologia , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores Notch/metabolismo , Animais , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Cultivadas , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos , Endotélio/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia
19.
Epigenomics ; 11(3): 281-296, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30753117

RESUMO

AIM: To assess whether DNA methylation of monocytes play a role in the development of acute diabetic Charcot foot (CF). PATIENTS & METHODS: We studied the whole methylome (WM) of circulating monocytes in 18 patients with Type 2 diabetes (T2D) and acute CF, 18 T2D patients with equivalent neuropathy and 18 T2D patients without neuropathy, using the enhanced reduced representation bisulfite sequencing technique. RESULTS & CONCLUSION: WM analysis demonstrated that CF monocytes are differentially methylated compared with non-CF monocytes, in both CpG-site and gene-mapped analysis approaches. Among the methylated genes, several are involved in the migration process during monocyte differentiation into osteoclasts or are indirectly involved through the regulation of inflammatory pathways. Finally, we demonstrated an association between methylation and gene expression in cis- and trans-association.


Assuntos
Pé Diabético/etiologia , Pé Diabético/metabolismo , Epigenoma , Regulação da Expressão Gênica , Monócitos/metabolismo , Osteoclastos/metabolismo , Adulto , Biomarcadores , Biologia Computacional/métodos , Ilhas de CpG , Metilação de DNA , Diabetes Mellitus Tipo 2 , Pé Diabético/patologia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Epigenômica/métodos , Feminino , Redes Reguladoras de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Osteoclastos/imunologia
20.
Int J Surg ; 60: 245-251, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30481612

RESUMO

BACKGROUND: Recent reports have demonstrated uterus transplantation as a relevant solution to treat absolute uterine infertility. Training on animal models is a prerequisite to set up a uterine transplantation program in humans. Sheep have been used as an optimal model for training and research as they display similar vessels size to human. While the ovine model might seem easy there are many difficulties in performing this complex surgery. In this study we describe through our experience the critical initial steps toward building a learning curve toward an optimal ovine uterine transplantation model. MATERIALS: We performed nine orthotopic uterine autotransplantations using end-to-side anastomoses to the external iliac vessels in sheep. We recorded the duration of all surgical steps and pointed out specific difficulties and solution found. RESULTS: We were able to perform optimal uterine dissection after the first 5 cases and optimal bilateral arterial and venous anastomoses, after 7 and 9 cases respectively. The main factors associated to success rate were optimal exposure, appropriate equipment, careful vessel preparation and modification of the anastomosis technique. CONCLUSION: As uterine transplantation research programs are expanding, setting up an ovine model to train and perform research is critical. Such model is complex and requires optimized multidisciplinary approach to build an efficient learning curve.


Assuntos
Anastomose Cirúrgica/métodos , Útero/transplante , Animais , Feminino , Modelos Animais , Ovinos , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA