Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 16(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39235046

RESUMO

The South American archaeological record has ample evidence of the socio-cultural dynamism of human populations in the past. This has also been supported through the analysis of ancient genomes, by showing evidence of gene flow across the region. While the extent of these signals is yet to be tested, the growing number of ancient genomes allows for more fine-scaled hypotheses to be evaluated. In this study, we assessed the genetic diversity of individuals associated with the Inka ritual, Qhapaq hucha. As part of this ceremony, one or more individuals were buried with Inka and local-style offerings on mountain summits along the Andes, leaving a very distinctive record. Using paleogenomic tools, we analyzed three individuals: two newly generated genomes from El Plomo Mountain (Chile) and El Toro Mountain (Argentina), and a previously published genome from Argentina (Aconcagua Mountain). Our results reveal a complex demographic scenario with each of the individuals showing different genetic affinities. Furthermore, while two individuals showed genetic similarities with present-day and ancient populations from the southern region of the Inka empire, the third individual may have undertaken long-distance movement. The genetic diversity we observed between individuals from similar cultural contexts supports the highly diverse strategies Inka implemented while incorporating new territories. More broadly, this research contributes to our growing understanding of the population dynamics in the Andes by discussing the implications and temporality of population movements in the region.


Assuntos
Genoma Humano , Humanos , Argentina , Chile , Variação Genética , Diversidade Cultural , Comportamento Ritualístico , Indígenas Sul-Americanos/genética , Genômica
2.
HGG Adv ; 5(3): 100305, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38720459

RESUMO

Over the past decade, genomic data have contributed to several insights on global human population histories. These studies have been met both with interest and critically, particularly by populations with oral histories that are records of their past and often reference their origins. While several studies have reported concordance between oral and genetic histories, there is potential for tension that may stem from genetic histories being prioritized or used to confirm community-based knowledge and ethnography, especially if they differ. To investigate the interplay between oral and genetic histories, we focused on the southwestern region of India and analyzed whole-genome sequence data from 156 individuals identifying as Bunt, Kodava, Nair, and Kapla. We supplemented limited anthropological records on these populations with oral history accounts from community members and historical literature, focusing on references to non-local origins such as the ancient Scythians in the case of Bunt, Kodava, and Nair, members of Alexander the Great's army for the Kodava, and an African-related source for Kapla. We found these populations to be genetically most similar to other Indian populations, with the Kapla more similar to South Indian tribal populations that maximize a genetic ancestry related to Ancient Ancestral South Indians. We did not find evidence of additional genetic sources in the study populations than those known to have contributed to many other present-day South Asian populations. Our results demonstrate that oral and genetic histories may not always provide consistent accounts of population origins and motivate further community-engaged, multi-disciplinary investigations of non-local origin stories in these communities.


Assuntos
Genética Populacional , Humanos , Etnicidade/genética , Genoma Humano/genética , Índia/etnologia , Sequenciamento Completo do Genoma , Entrevistas como Assunto
3.
Science ; 382(6666): 53-58, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797024

RESUMO

Ancient DNA (aDNA) has added a wealth of information about our species' history, including insights on genetic origins, migrations and gene flow, genetic admixture, and health and disease. Much early work has focused on continental-level questions, leaving many regional questions, especially those relevant to the Global South, comparatively underexplored. A few success stories of aDNA studies from smaller laboratories involve more local aspects of human histories and health in the Americas, Africa, Asia, and Oceania. In this Review, we cover some of these contributions by synthesizing finer-scale questions of importance to the archaeogenetics field, as well as to Indigenous and Descendant communities. We further highlight the potential of aDNA to uncover past histories in regions where colonialism has neglected the oral histories of oppressed peoples.


Assuntos
DNA Antigo , Demografia , Saúde , Estrutura Social , Humanos , África , América , Ásia , Oceania , Demografia/história , Saúde/história
4.
Front Genet ; 13: 880170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559028

RESUMO

Paleogenomics - the study of ancient genomes - has made significant contributions, especially to our understanding of the evolutionary history of humans. This knowledge influx has been a direct result of the coupling of next-generation sequencing with improved methods for DNA recovery and analysis of ancient samples. The appeal of ancient DNA studies in the popular media coupled with the trend for such work to be published in "high impact" journals has driven the amassing of ancestral human remains from global collections, often with limited to no engagement or involvement of local researchers and communities. This practice in the paleogenomics literature has led to limited representation of researchers from the Global South at the research design and subsequent stages. Additionally, Indigenous and descendant communities are often alienated from popular and academic narratives that both involve and impact them, sometimes adversely. While some countries have safeguards against 'helicopter science', such as federally regulated measures to protect their biocultural heritage, there is variable oversight in others with regard to sampling and exportation of human remains for destructive research, and differing requirements for accountability or consultation with local researchers and communities. These disparities reveal stark contrasts and gaps in regional policies that lend themselves to persistent colonial practices. While essential critiques and conversations in this sphere are taking place, these are primarily guided through the lens of US-based heritage legislation such as the Native American Graves and Protection Act (NAGPRA). In this article, we aim to expand the scope of ongoing conversations by taking into account diverse regional contexts and challenges drawing from our own research experiences in the field of paleogenomics. We emphasize that true collaborations involve knowledge sharing, capacity building, mutual respect, and equitable participation, all of which take time and the implementation of sustainable research methods; amass-and-publish strategy is simply incompatible with this ethos.

6.
Cell ; 179(3): 586-588, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626767

RESUMO

Shinde et al. report the first genome-wide data from an ancient individual from the Indus Valley Civilization in South Asia. Their findings have implications for the origins and spread of farming and Indo-European languages in the region and the makings of the South Asian gene pool.


Assuntos
Cemitérios , Civilização , Arqueologia , Ásia , Humanos , Índia
7.
Nat Commun ; 7: 13389, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824339

RESUMO

The demographic history of Greenland is characterized by recurrent migrations and extinctions since the first humans arrived 4,500 years ago. Our current understanding of these extinct cultures relies primarily on preserved fossils found in their archaeological deposits, which hold valuable information on past subsistence practices. However, some exploited taxa, though economically important, comprise only a small fraction of these sub-fossil assemblages. Here we reconstruct a comprehensive record of past subsistence economies in Greenland by sequencing ancient DNA from four well-described midden deposits. Our results confirm that the species found in the fossil record, like harp seal and ringed seal, were a vital part of Inuit subsistence, but also add a new dimension with evidence that caribou, walrus and whale species played a more prominent role for the survival of Paleo-Inuit cultures than previously reported. Most notably, we report evidence of bowhead whale exploitation by the Saqqaq culture 4,000 years ago.


Assuntos
Baleia Franca/genética , DNA/genética , Inuíte , Animais , Arqueologia , Biodiversidade , Dano ao DNA , DNA de Plantas/genética , Fósseis , Geografia , Sedimentos Geológicos , Groenlândia , Helmintos/classificação , Humanos , Análise de Sequência de DNA , Fatores de Tempo
8.
Science ; 349(6250): aab3884, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26198033

RESUMO

How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.


Assuntos
Migração Humana/história , Indígenas Norte-Americanos/história , América , Fluxo Gênico , Genômica , História Antiga , Humanos , Indígenas Norte-Americanos/genética , Modelos Genéticos , Sibéria
9.
Philos Trans R Soc Lond B Biol Sci ; 370(1660): 20130387, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25487338

RESUMO

The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.


Assuntos
DNA/genética , DNA/história , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Genômica/tendências , Sequenciamento de Nucleotídeos em Larga Escala/tendências , História Antiga , Humanos
10.
Am J Hum Genet ; 95(5): 584-589, 2014 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-25449608

RESUMO

Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6-23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment.

11.
Proc Natl Acad Sci U S A ; 111(52): E5661-9, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512547

RESUMO

The domestication of the horse ∼ 5.5 kya and the emergence of mounted riding, chariotry, and cavalry dramatically transformed human civilization. However, the genetics underlying horse domestication are difficult to reconstruct, given the near extinction of wild horses. We therefore sequenced two ancient horse genomes from Taymyr, Russia (at 7.4- and 24.3-fold coverage), both predating the earliest archeological evidence of domestication. We compared these genomes with genomes of domesticated horses and the wild Przewalski's horse and found genetic structure within Eurasia in the Late Pleistocene, with the ancient population contributing significantly to the genetic variation of domesticated breeds. We furthermore identified a conservative set of 125 potential domestication targets using four complementary scans for genes that have undergone positive selection. One group of genes is involved in muscular and limb development, articular junctions, and the cardiac system, and may represent physiological adaptations to human utilization. A second group consists of genes with cognitive functions, including social behavior, learning capabilities, fear response, and agreeableness, which may have been key for taming horses. We also found that domestication is associated with inbreeding and an excess of deleterious mutations. This genetic load is in line with the "cost of domestication" hypothesis also reported for rice, tomatoes, and dogs, and it is generally attributed to the relaxation of purifying selection resulting from the strong demographic bottlenecks accompanying domestication. Our work demonstrates the power of ancient genomes to reconstruct the complex genetic changes that transformed wild animals into their domesticated forms, and the population context in which this process took place.


Assuntos
Animais Domésticos/genética , Evolução Molecular , Genoma/fisiologia , Cavalos/genética , Animais , Sistema Cardiovascular/anatomia & histologia , Cães , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologia , Cavalos/anatomia & histologia , Humanos , Endogamia , Federação Russa
12.
Curr Biol ; 24(21): R1035-7, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25455029

RESUMO

Understanding the peopling of the Americas remains an important and challenging question. Here, we present (14)C dates, and morphological, isotopic and genomic sequence data from two human skulls from the state of Minas Gerais, Brazil, part of one of the indigenous groups known as 'Botocudos'. We find that their genomic ancestry is Polynesian, with no detectable Native American component. Radiocarbon analysis of the skulls shows that the individuals had died prior to the beginning of the 19th century. Our findings could either represent genomic evidence of Polynesians reaching South America during their Pacific expansion, or European-mediated transport.


Assuntos
Genoma Humano , Indígenas Sul-Americanos/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Brasil , DNA Mitocondrial/genética , Humanos , Datação Radiométrica
13.
PLoS One ; 9(10): e110839, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25337992

RESUMO

While numerous ancient human DNA datasets from across Europe have been published till date, modern-day Poland in particular, remains uninvestigated. Besides application in the reconstruction of continent-wide human history, data from this region would also contribute towards our understanding of the history of the Slavs, whose origin is hypothesized to be in East or Central Europe. Here, we present the first population-scale ancient human DNA study from the region of modern-day Poland by establishing mitochondrial DNA profiles for 23 samples dated to 200 BC - 500 AD (Roman Iron Age) and for 20 samples dated to 1000-1400 AD (Medieval Age). Our results show that mitochondrial DNA sequences from both periods belong to haplogroups that are characteristic of contemporary West Eurasia. Haplotype sharing analysis indicates that majority of the ancient haplotypes are widespread in some modern Europeans, including Poles. Notably, the Roman Iron Age samples share more rare haplotypes with Central and Northeast Europeans, whereas the Medieval Age samples share more rare haplotypes with East-Central and South-East Europeans, primarily Slavic populations. Our data demonstrates genetic continuity of certain matrilineages (H5a1 and N1a1a2) in the area of present-day Poland from at least the Roman Iron Age until present. As such, the maternal gene pool of present-day Poles, Czechs and Slovaks, categorized as Western Slavs, is likely to have descended from inhabitants of East-Central Europe during the Roman Iron Age.


Assuntos
DNA Mitocondrial/genética , Haplótipos , População Branca/genética , Sequência de Bases , Sequência Consenso , Feminino , História Antiga , Humanos , Filogenia , Polônia , Análise de Sequência de DNA
14.
Science ; 345(6200): 1255832, 2014 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-25170159

RESUMO

The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Aleutian Islands, and Siberia. We show that Paleo-Eskimos (~3000 BCE to 1300 CE) represent a migration pulse into the Americas independent of both Native American and Inuit expansions. Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the arrival of a new population, representing the ancestors of present-day Inuit, with evidence of past gene flow between these lineages. Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo metapopulation likely survived in near-isolation for more than 4000 years, only to vanish around 700 years ago.


Assuntos
Genoma Humano/genética , Migração Humana , Inuíte/genética , Alaska/etnologia , Regiões Árticas/etnologia , Sequência de Bases , Osso e Ossos , Canadá/etnologia , DNA Mitocondrial/genética , Groenlândia/etnologia , Cabelo , História Antiga , Humanos , Inuíte/etnologia , Inuíte/história , Dados de Sequência Molecular , Sibéria/etnologia , Sobreviventes/história , Dente
15.
Biol Lett ; 10(7)2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25115033

RESUMO

The Capromyidae (hutias) are endemic rodents of the Caribbean and represent a model of dispersal for non-flying mammals in the Greater Antilles. This family has experienced severe extinctions during the Holocene and its phylogenetic affinities with respect to other caviomorph relatives are still debated as morphological and molecular data disagree. We used target enrichment and next-generation sequencing of mitochondrial and nuclear genes to infer the phylogenetic relationships of hutias, estimate their divergence ages, and understand their mode of dispersal in the Greater Antilles.We found that Capromyidae are nested within Echimyidae (spiny rats) and should be considered a subfamily thereof. We estimated that the split between hutias and Atlantic Forest spiny rats occurred 16.5 (14.8­18.2) million years ago (Ma), which is more recent than the GAARlandia land bridge hypothesis (34­35 Ma). This would suggest that during the Early Miocene, an echimyid-like ancestor colonized the Greater Antilles from an eastern South American source population via rafting. The basal divergence of the Hispaniolan Plagiodontia provides further support for a vicariant separation between Hispaniolan and western islands (Bahamas, Cuba, Jamaica) hutias. Recent divergences among these western hutias suggest Plio-Pleistocene dispersal waves associated with glacial cycles.


Assuntos
Filogenia , Roedores/classificação , Roedores/genética , Animais , Sequência de Bases , Evolução Biológica , Região do Caribe , Mitocôndrias/genética , Dados de Sequência Molecular , Filogeografia , RNA Ribossômico/genética , Análise de Sequência de DNA
16.
Science ; 344(6185): 747-50, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24762536

RESUMO

Prehistoric population structure associated with the transition to an agricultural lifestyle in Europe remains a contentious idea. Population-genomic data from 11 Scandinavian Stone Age human remains suggest that hunter-gatherers had lower genetic diversity than that of farmers. Despite their close geographical proximity, the genetic differentiation between the two Stone Age groups was greater than that observed among extant European populations. Additionally, the Scandinavian Neolithic farmers exhibited a greater degree of hunter-gatherer-related admixture than that of the Tyrolean Iceman, who also originated from a farming context. In contrast, Scandinavian hunter-gatherers displayed no significant evidence of introgression from farmers. Our findings suggest that Stone Age foraging groups were historically in low numbers, likely owing to oscillating living conditions or restricted carrying capacity, and that they were partially incorporated into expanding farming groups.


Assuntos
Agricultura/história , DNA Mitocondrial/genética , Variação Genética , Genoma Humano , População Branca/genética , DNA Mitocondrial/história , Genômica , História Antiga , Humanos , Países Escandinavos e Nórdicos , População Branca/história
17.
Nature ; 505(7481): 87-91, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24256729

RESUMO

The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal'ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.


Assuntos
Povo Asiático/genética , Genoma Humano/genética , Indígenas Norte-Americanos/etnologia , Indígenas Norte-Americanos/genética , Filogenia , População Branca/genética , Animais , Ásia/etnologia , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Emigração e Imigração , Fluxo Gênico/genética , Genoma Mitocondrial/genética , Haplótipos/genética , Humanos , Indígenas Norte-Americanos/classificação , Masculino , Filogeografia , Sibéria/etnologia , Esqueleto
18.
Nature ; 499(7456): 74-8, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23803765

RESUMO

The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.


Assuntos
Evolução Molecular , Genoma/genética , Cavalos/genética , Filogenia , Animais , Conservação dos Recursos Naturais , DNA/análise , DNA/genética , Espécies em Perigo de Extinção , Equidae/classificação , Equidae/genética , Fósseis , Variação Genética/genética , História Antiga , Cavalos/classificação , Proteínas/análise , Proteínas/química , Proteínas/genética , Yukon
19.
PLoS One ; 8(2): e55950, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437078

RESUMO

The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy's zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya).


Assuntos
Genoma Mitocondrial/genética , Genômica , Cavalos/genética , Filogenia , Animais , Teorema de Bayes , Fósseis , Seleção Genética/genética , Fatores de Tempo
20.
Science ; 337(6091): 223-8, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22798611

RESUMO

The Paisley Caves in Oregon record the oldest directly dated human remains (DNA) in the Western Hemisphere. More than 100 high-precision radiocarbon dates show that deposits containing artifacts and coprolites ranging in age from 12,450 to 2295 (14)C years ago are well stratified. Western Stemmed projectile points were recovered in deposits dated to 11,070 to 11,340 (14)C years ago, a time contemporaneous with or preceding the Clovis technology. There is no evidence of diagnostic Clovis technology at the site. These two distinct technologies were parallel developments, not the product of a unilinear technological evolution. "Blind testing" analysis of coprolites by an independent laboratory confirms the presence of human DNA in specimens of pre-Clovis age. The colonization of the Americas involved multiple technologically divergent, and possibly genetically divergent, founding groups.


Assuntos
Arqueologia , Cavernas , Fósseis , Animais , DNA/análise , Emigração e Imigração/história , Fezes , História Antiga , Humanos , Dados de Sequência Molecular , América do Norte , Oregon , Dinâmica Populacional , Datação Radiométrica , Roedores , Tecnologia/história , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA