Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Heliyon ; 10(10): e31559, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831830

RESUMO

Disturbances in the oral microbiota may be due to several mechanisms and factors, such as smoking. An imbalance in oral bacteria may result in changes to the innate immune system and the development of periodontal disease. This study aimed to investigate the distribution of oral microbiota in smokers and non-smokers in a South African population using subgingival plaque samples. From the 128 recruited participants, 57 were identified as smokers (serum cotinine: >15 ng/ml). Analysis of 16S rRNA gene sequencing demonstrated significant differences between the two groups with a reduced abundance of Actinobacteria in smokers. Fusobacterium and Campylobacter were found in higher abundance, while a lower abundance of Leptotrichia, Actinomyces, Corynebacterium, and Lautropia were observed. This study highlighted significant differences in the oral microbiota of smokers, indicating an abundance of anaerobic gram-negative bacteria. These findings suggest that smoking allows certain oral microorganisms to gain dominance, thereby predisposing individuals to periodontal disease development and progression.

2.
Food Sci Nutr ; 12(5): 3574-3584, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726423

RESUMO

High glucose concentrations result in oxidative stress, leading to damage of cellular constituents like DNA, proteins, and lipids, ultimately resulting in apoptosis. Resveratrol, a polyphenol phytoalexin, has been studied for its potential therapeutic effects on diabetes. This study investigated the influence of high glucose (HG) on HepG2 cells and assessed resveratrol's effect on high-glucose-induced oxidative stress and apoptosis. HepG2 cells were cultured for 48 and 72 h with high glucose (40 mM), low resveratrol (25 µM), high resveratrol (50 µM), high glucose + low resveratrol, and high glucose + high resveratrol. After exposure, oxidative and apoptosis-related gene expression was evaluated using quantitative polymerase chain reaction (qPCR), and lactate dehydrogenase (LDH) release was measured using the supernatant. In HepG2 cells cultured with high glucose, all antioxidant enzymes (SOD, superoxide dismutase; GPx1, glutathione peroxidase 1; CAT, catalase; Nrf2, nuclear factor erythroid 2-related factor 2; and NQO1, NAD(P)H quinone oxidoreductase 1) were significantly reduced; however, when HepG2 cells were cultured with resveratrol (25 and 50 µM) and high glucose, the expression levels of all antioxidant enzymes were increased. The anti-apoptotic gene (B-cell lymphoma 2; Bcl2) and the DNA repair gene (Oxoguanine glycosylase-1, OGG1) were significantly decreased following high glucose exposure to HepG2 cells. Surprisingly, the expression levels of Bcl2 and OGG1 were notably elevated after resveratrol treatment. Furthermore, high glucose levels increased the LHD release in HepG2 cells, whereas resveratrol treatment reduced the LDH release. Our results demonstrate that resveratrol provides protection against oxidative stress and apoptosis induced by high glucose in HepG2 cells. Hence, resveratrol shows potential as an effective approach to address the impaired antioxidant response resulting from elevated glucose levels commonly observed in diabetes and metabolic disorders.

3.
Sci Rep ; 14(1): 1106, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212345

RESUMO

Diabetes mellitus (DM) is characterized by impaired glucose and insulin metabolism, resulting in chronic hyperglycemia. Hyperglycemia-induced inflammation is linked to the onset and progression of diabetes. Resveratrol (RES), a polyphenol phytoalexin, is studied in diabetes therapeutics research. This study evaluates the effect of RES on inflammation and glucose metabolism in HepG2 cells exposed to high glucose. Inflammation and glucose metabolism-related genes were investigated using qPCR. Further, inflammatory genes were analyzed by applying ELISA and Bioplex assays. High glucose significantly increases IKK-α, IKB-α, and NF-kB expression compared to controls. Increased NF-kB expression was followed by increased expression of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-ß, and COX2. RES treatment significantly reduced the expression of NF-kB, IKK-α, and IKB-α, as well as pro-inflammatory cytokines. High glucose levels reduced the expression of TGFß1, while treatment with RES increased the expression of TGFß1. As glucose levels increased, PEPCK expression was reduced, and GCK expression was increased in HepG2 cells treated with RES. Further, HepG2 cells cultured with high glucose showed significant increases in KLF7 and HIF1A but decreased SIRT1. Moreover, RES significantly increased SIRT1 expression and reduced KLF7 and HIF1A expression levels. Our results indicated that RES could attenuate high glucose-induced inflammation and enhance glucose metabolism in HepG2 cells.


Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Resveratrol/farmacologia , NF-kappa B/metabolismo , Células Hep G2 , Sirtuína 1/genética , Sirtuína 1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas , Glucose , Fatores de Transcrição Kruppel-Like
4.
Nutrients ; 14(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956323

RESUMO

Vitamin D reportedly plays an important role in the pathogenesis of diabetes mellitus; however, this role is unclear and debated. This study investigated the association between 25(OH) vitamin D, vitamin D-binding proteins, and vitamin D receptor (VDR) polymorphisms in healthy individuals and those with prediabetes and type 2 diabetes mellitus (T2D) from South Africa. A cross-sectional study was conducted involving subjects of mixed ancestry aged ≥20 years. Males presented with higher mean 25(OH) vitamin D levels than females, while females exhibited significantly higher serum vitamin D-binding protein levels. Significant differences in mean 25(OH) vitamin D levels were observed in normo-glycaemic, prediabetes, screen-detected DM, and known DM individuals. Vitamin D receptor SNPs Fok1 and Taq1 were not associated with glycaemic status. Fok1 was not associated with 25(OH) vitamin D deficiency, while Taq1 was associated with vitamin D insufficiency. This study showed a high prevalence of vitamin D deficiency/insufficiency in this South African population, with decreased vitamin D levels observed in hyperglycaemic individuals, which was not linked to either vitamin D-binding protein or polymorphisms in Fok1 of the VDR gene. These results may be used as a platform for further research into diagnosis and treatment of hyperglycaemia.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Estado Pré-Diabético , Deficiência de Vitamina D , Estudos de Casos e Controles , Estudos Transversais , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Hiperglicemia/genética , Masculino , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D , Deficiência de Vitamina D/genética , Proteína de Ligação a Vitamina D/genética , Vitaminas
5.
Biomedicines ; 11(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36672511

RESUMO

The oral microbiota plays a crucial role in both systemic inflammation and metabolic syndrome (MetS), which is characterised by low-grade inflammation. Studies have analysed the gut microbiota using stool specimens from subjects with MetS; however, the etiological role of the oral microbiota in the development of MetS is still uncertain. We investigated the oral microbiota of 128 subgingival plaque samples from a South African cohort with and without MetS. After a comprehensive analysis of the oral microbiota, we observed a significant increase in Gram-positive aerobic and anaerobic microbiota in those with MetS. We observed an abundance of Actinomyces, Corynebacterium, and Fusobacterium genera in the MetS group, which differed significantly from previous studies, which found Granulicatella to be enriched in MetS. To further assess the impact of the metabolic parameters (FBG, Waist C, HDL, TGs, and BP) on the oral microbiota, we calculated the odds ratio (ORs) for significant oral microbiota identified between the MetS groups. We found that different species were associated with at least four MetS risk factors. This study has shown that the oral microbiota is disrupted in MetS and may promote inflammation providing a gateway to other systemic diseases, including diabetes and cardiovascular diseases.

6.
Nutrients ; 13(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34960114

RESUMO

The 5-10-methylenetetrahydrofolate reductase (MTHFR) enzyme is vital for cellular homeostasis due to its key functions in the one-carbon cycle, which include methionine and folate metabolism and protein, DNA, and RNA synthesis. The enzyme is responsible for maintaining methionine and homocysteine (Hcy) balance to prevent cellular dysfunction. Polymorphisms in the MTHFR gene, especially C677T, have been associated with various diseases, including cardiovascular diseases (CVDs), cancer, inflammatory conditions, diabetes, and vascular disorders. The C677T MTHFR polymorphism is thought to be the most common cause of elevated Hcy levels, which is considered an independent risk factor for CVD. This polymorphism results in an amino acid change from alanine to valine, which prevents optimal functioning of the enzyme at temperatures above 37 °C. Many studies have been conducted to determine whether there is an association between the C677T polymorphism and increased risk for CVD. There is much evidence in favour of this association, while several studies have concluded that the polymorphism cannot be used to predict CVD development or progression. This review discusses current research regarding the C677T polymorphism and its relationship with CVD, inflammation, diabetes, and epigenetic regulation and compares the evidence provided for and against the association with CVD.


Assuntos
Doenças Cardiovasculares/epidemiologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Polimorfismo Genético , Ciclo do Carbono , Diabetes Mellitus/epidemiologia , Epigênese Genética , Feminino , Ácido Fólico/metabolismo , Fatores de Risco de Doenças Cardíacas , Homocisteína/metabolismo , Humanos , Inflamação/epidemiologia , Masculino , Metionina/metabolismo , Doenças Vasculares/epidemiologia , Vitamina B 12/metabolismo
7.
Front Genet ; 12: 710438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594360

RESUMO

MicroRNAs are non-coding, post-transcriptional regulators of gene expression and their dysregulation has been associated with development of various diseases, including hypertension. Consequently, understanding their role in the pathogenesis and progression of disease is essential. Prior research focusing on microRNAs in disease has provided a basis for understanding disease prognosis and offered possible channels for therapeutic interventions. Herein, we aimed to investigate possible differences in the expression profiles of five microRNAs in the blood of participants grouped on the basis of their hypertension status. This was done to elucidate the possible roles played by these microRNAs in the development of hypertension. Using quantitative reverse transcription polymerase chain reaction, we evaluated the expression levels of miR-126-3p, 30a-5p, 182-5p, 30e-3p, and 1299 in the whole blood of 1456 participants, normotensive (n = 573), screen-detected hypertensive (n = 304) and known hypertensive (n = 579). The expression of miR-126-3p and 182-5p was significantly higher in known hypertensives relative to both screen-detected hypertensives and normotensives, and also in screen-detected hypertensives vs normotensives. A significant association between the expression of miR-126-3p, 182-5p, and 30a-5p and known hypertension was also evident. This study demonstrated dysregulated miR-126-3p, 182-5p, and 30a-5p expression in hypertension, highlighting the possible efficacy of these microRNAs as targets for the diagnosis of hypertension as well as the development of microRNA-based therapies.

8.
Front Genet ; 12: 702410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567065

RESUMO

Aim: The influence of disease duration and anti-diabetic treatment on epigenetic processes has been described, with limited focus on interactions with microRNAs (miRNAs). miRNAs have been found to play key roles in the regulation of pathways associated with type 2 diabetes mellitus (T2DM), and expression patterns in response to treatment may further promote their use as therapeutic targets in T2DM and its associated complications. We therefore aimed to investigate the expressions of circulating miRNAs (miR-30a-5p, miR-1299, miR-182-5p, miR-30e-3p and miR-126-3p) in newly diagnosed and known diabetics on treatment, in South Africa. Methods: A total of 1254 participants with an average age of 53.8years were included in the study and classified according to glycaemic status (974 normotolerant, 92 screen-detected diabetes and 188 known diabetes). Whole blood levels of miR-30a-5p, miR-1299, miR-182-5p, miR-30e-3p and miR-126-3p were quantitated using RT-qPCR. Expression analysis was performed and compared across groups. Results: All miRNAs were significantly overexpressed in subjects with known diabetes when compared to normotolerant individuals, as well as known diabetics vs. screen-detected (p<0.001). Upon performing regression analysis, of all miRNAs, only miR-182-5p remained associated with the duration of the disease after adjustment for type of treatment (OR: 0.127, CI: 0.018-0.236, p=0.023). Conclusion: Our findings revealed important associations and altered expression patterns of miR-30a-5p, miR-1299, miR-182-5p, miR-30e-3p and miR-126-3p in known diabetics on anti-diabetic treatment compared to newly diagnosed individuals. Additionally, miR-182-5p expression decreased with increasing duration of T2DM. Further studies are, however, recommended to shed light on the involvement of the miRNA in insulin signalling and glucose homeostasis, to endorse its use as a therapeutic target in DM and its associated complications.

9.
Diagnostics (Basel) ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073154

RESUMO

This cross-sectional study investigated the association of miR-1299, -126-3p and -30e-3p with and their diagnostic capability for dysglycaemia in 1273 (men, n = 345) South Africans, aged >20 years. Glycaemic status was assessed by oral glucose tolerance test (OGTT). Whole blood microRNA (miRNA) expressions were assessed using TaqMan-based reverse transcription quantitative-PCR (RT-qPCR). Receiver operating characteristic (ROC) curves assessed the ability of each miRNA to discriminate dysglycaemia, while multivariable logistic regression analyses linked expression with dysglycaemia. In all, 207 (16.2%) and 94 (7.4%) participants had prediabetes and type 2 diabetes mellitus (T2DM), respectively. All three miRNAs were significantly highly expressed in individuals with prediabetes compared to normotolerant patients, p < 0.001. miR-30e-3p and miR-126-3p were also significantly more expressed in T2DM versus normotolerant patients, p < 0.001. In multivariable logistic regressions, the three miRNAs were consistently and continuously associated with prediabetes, while only miR-126-3p was associated with T2DM. The ROC analysis indicated all three miRNAs had a significant overall predictive ability to diagnose prediabetes, diabetes and the combination of both (dysglycaemia), with the area under the receiver operating characteristic curve (AUC) being significantly higher for miR-126-3p in prediabetes. For prediabetes diagnosis, miR-126-3p (AUC = 0.760) outperformed HbA1c (AUC = 0.695), p = 0.042. These results suggest that miR-1299, -126-3p and -30e-3p are associated with prediabetes, and measuring miR-126-3p could potentially contribute to diabetes risk screening strategies.

10.
Front Cardiovasc Med ; 8: 645541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937359

RESUMO

Hypertension has a complex pathogenesis and symptoms appear in advanced disease. Dysregulation of gene expression regulatory factors like microRNAs has been reported in disease development. Identifying biomarkers which could help understand the pathogenesis and prognosis of hypertension is essential. The study's objective was to investigate microRNA expression profiles according to participant blood pressure status. Next generation sequencing was used to identify microRNAs in the whole blood of 48 body mass index-, smoking- and age-matched normotensive (n = 12), screen-detected hypertensive (n = 16) and known hypertensive (n = 20) female participants. Quantitative reverse transcription polymerase chain reaction was used to validate the next generation sequencing findings in a larger, independent sample of 84 men and 179 women. Using next generation sequencing, 30 dysregulated microRNAs were identified and miR-1299 and miR-30a-5p were the most significantly differentially expressed. Both microRNAs were upregulated in known hypertensives or screen-detected hypertensives compared to the normotensives. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated possible involvement of platelet activation, calcium signaling and aldosterone synthesis pathways. Further validation of miR-1299 and miR-30a-5p using quantitative reverse transcription polymerase chain reaction confirmed sequencing results while yielding new findings. These findings demonstrate microRNA dysregulation in hypertension and their expression may be related to genes and biological pathways essential for blood pressure homeostasis.

11.
Mol Biol Rep ; 48(3): 2553-2560, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33759050

RESUMO

MicroRNAs are important in development of disease, and description of novel microRNAs adds to the pool of microRNAs that can be targeted for diagnostic and therapeutic purposes in disease. Herein, we aimed to describe novel microRNAs in a normotensive and hypertensive African population and relate their expression to blood pressure parameters and hypertension status. Previous work using next-generation sequencing showed differential expression of two novel microRNAs in the blood of normotensives and hypertensives. Herein, we have investigated these novel microRNAs by quantitative reverse transcription polymerase chain reaction in a cohort of 881 participants in this study. The relationship between the novel microRNAs and systolic and diastolic blood pressure as well as mean arterial pressure was also investigated. Age and sex-adjusted Spearman's correlations were used to assess the relationship between microRNAs and cardiovascular risk profile variables whilst multivariable logistic regression models were used to assess the association of microRNAs with screen-detected and known hypertension. The novel microRNAs (miR-novel-chr1_36178 and miR-novel-chr15_18383) were significantly dysregulated by hypertension status. The expression of miR-novel-chr1_36178 differed according to sex, correlated with mean arterial pressure and systolic and diastolic blood pressure at higher levels of expression and was associated with screen-detected hypertension. The association of miR-novel-chr1_36178 expression with mean arterial pressure and systolic and diastolic blood pressure, as well as its dysregulation according to hypertension status suggests its possible utility as a biomarker target for hypertension diagnosis and/or therapeutics. Furthermore, its association with screen detected hypertension and dose-response relationship with blood pressure suggests it may be used to identify and monitor individuals at risk of hypertension.


Assuntos
Pressão Sanguínea/genética , MicroRNAs/genética , População Urbana , Adulto , Feminino , Regulação da Expressão Gênica , Humanos , Modelos Lineares , Masculino , MicroRNAs/metabolismo , Razão de Chances , África do Sul , Estatísticas não Paramétricas
12.
Mycotoxin Res ; 37(1): 97-103, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33403569

RESUMO

Patulin (PAT) is a mycotoxin produced by various fungal species that commonly contaminate apples and other fruit products. PAT is associated with glutathione (GSH) depletion and oxidative stress. Cytoprotective and antioxidant (AO) enzymes limit toxic outcomes and confer resistance to oxidative stress by influencing the expression of cytoprotective genes. The induction of these genes is tightly regulated by transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2), a potential target of microRNA (miR)-144. This study aims to determine a possible role for miR-144 in NRF2 pathway activation following PAT exposure in human embryonic kidney (HEK293) cells. HEK293 cells were exposed to varying PAT concentrations (0, 0.2, 0.5, 1 µmol/L; 24 h). Protein expression of Keap1, NRF2, and phosphorylated (p) NRF2 (ser40) was quantified using western blotting. Gene expression of NRF2, SOD2, CAT, GPx, NQO1, GSTA1, HMOX, and miR-144 were evaluated by qPCR. PAT significantly decreased miR-144 (p = 0.0249) and concomitantly increased NRF2 protein expression, stability, and activation as evidenced by increased pNRF2 (p = 0.0216) expression and decreased total NRF2 (p = 0.0237). This was consistent with qPCR data which showed increased transcript levels of NRF2 (p = 0.0378) as well as the target genes CAT (p = 0.0273), NQO1 (p = 0.0156), HMOX (p = 0.0249), and GSTA1 (p = 0.0237). No changes were observed in Keap1 expression (p = 0.6444). This study implicates microRNAs in a mechanistic role in PAT-induced toxicity. PAT decreased miR-144 expression leading to NRF2 pathway activation and elevated AO gene expression.


Assuntos
Redes e Vias Metabólicas/efeitos dos fármacos , MicroRNAs/genética , Micotoxinas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Patulina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Expressão Gênica , Células HEK293 , Humanos
13.
Appl Clin Genet ; 13: 209-219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363396

RESUMO

BACKGROUND AND AIM: Maturity-onset diabetes of the young (MODY) is the result of single gene variants. To date, fourteen different MODY subtypes have been described. Variants in genes coding for glucokinase (GCK, MODY2) and hepatic nuclear factor 1 alpha (HNF1A, MODY3) are most frequently encountered. MODY patients are often misdiagnosed with type 1 or type 2 diabetes, resulting in incorrect treatment protocols. At the time of reporting, no data are available on MODY prevalence in populations from Africa. Our study aimed to investigate and report on the incidence of MODY-related variants, specifically HNF1A variants, in a population from the Western Cape. METHODS: Study participants were recruited (1643 in total, 407 males, 1236 females) and underwent anthropometric tests. Thereafter, blood was collected, and real-time PCR was used to screen for specific variants in HNF1A and GCK genes. RESULTS: Ninety-seven individuals (5.9%) were identified with a specific HNF1A gene polymorphism (rs1169288) and twelve (0.9%) with a GCK polymorphism (rs4607517). CONCLUSION: In total, 6.6% of the study population expressed MODY variants. To our knowledge, we are the first to report on MODY incidence in Africa. This research provides the basis for MODY incidence studies in South Africa, as well as data on non-Caucasian populations.

14.
Diabetes Metab Syndr Obes ; 13: 5037-5047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376373

RESUMO

BACKGROUND: microRNAs (miRNAs) have been touted as potential diagnostic and prognostic biomarkers for various diseases. The aim of the present study was to evaluate the diagnostic value of miR-30a-5p and miR-182-5p for prediabetes and screen-detected type 2 diabetes mellitus (T2DM). METHODS: The study included 1270 participants (207 prediabetes, 94 screen-detected diabetes and 969 normotolerant) from the Vascular and Metabolic Health (VMH) study. Whole blood levels of miR-30a-5p and miR-182-5p were quantitated by RT-qPCR. Multivariable logistic regressions were used to relate miRNAs with prediabetes or T2DM and receiver operating characteristic (ROC) curves were used to evaluate the ability of each miRNA to diagnose these conditions. RESULTS: Both miRNAs were significantly highly expressed in individuals with prediabetes or T2DM (both ≥3.2-fold, and p<0.001). We also observed significant under-expression in T2DM relative to prediabetes for miR-182-5p (0.49-fold, p=0.001). Age, sex and BMI-adjusted partial correlation coefficient analysis revealed a significant correlation between the two miRNAs across glucose tolerance statuses (r≥0.932, p<0.001). In normotolerant individuals, both miRNAs showed a negative correlation with waist circumference and positive correlation with HDL-cholesterol whilst in T2DM they correlated positively with hip circumference, 2-hour insulin, HDL- and LDL-cholesterol. Multivariable logistic regressions revealed both miRNAs to be consistently and continuously associated with prediabetes or T2DM (OR≥1.18, 95% 95% CI: 1.10-1.28, p<0.001), while only miR-182-5p associated with a reduced prevalence of T2DM relative to prediabetes (OR: 0.89, 95% CI: 0.83-0.96, p=0.003). In ROC analyses, miR-182-5p almost outperformed HbA1c in diagnosing prediabetes; area under the curve 0.74 vs 0.69. CONCLUSION: Our findings demonstrate that miR-30a-5p and miR-182-5p are associated with dysglycaemia and could potentially predict prediabetes, particularly miR-182-5p.

15.
J Clin Pathol ; 73(8): 441-443, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32404472

RESUMO

Apolipoprotein L1 (APOL1) is a protein encoded by the APOL1 gene, found only in humans and several primates. Two variants encoding two different isoforms exist for APOL1, namely G1 and G2. These variants confer increased protection against trypanosome infection, and subsequent African sleeping sickness, and also increase the likelihood of renal disease in individuals of African ancestry. APOL1 mutations are associated with increased risk of chronic kidney disease, inflammation, and exacerbation of systemic lupus erythematosus-associated renal dysfunction. This review serves to outline the structure and function of APOL1, as well as its role in several disease outcomes.


Assuntos
Apolipoproteína L1/genética , Apolipoproteína L1/fisiologia , Autofagia/genética , Evolução Molecular , Variação Genética , Humanos , Inflamação/genética , Mutação/genética , Insuficiência Renal Crônica/genética , Tripanossomíase Africana/genética
16.
Epigenomes ; 4(3)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968291

RESUMO

Metformin, which is used as a first line treatment for type 2 diabetes mellitus (T2DM), has been shown to affect epigenetic patterns. In this study, we investigated the DNA methylation and potential lncRNA modifications in metformin-treated and newly diagnosed adults with T2DM. Genome-wide DNA methylation and lncRNA analysis were performed from the peripheral blood of 12 screen-detected and 12 metformin-treated T2DM individuals followed by gene ontology (GO) and KEGG pathway analysis. Differentially methylated regions (DMRs) observed showed 22 hypermethylated and 11 hypomethylated DMRs between individuals on metformin compared to screen-detected subjects. Amongst the hypomethylated DMR regions were the SLC gene family, specifically, SLC25A35 and SLC28A1. Fifty-seven lncRNA-associated DNA methylation regions included the mitochondrial ATP synthase-coupling factor 6 (ATP5J). Functional gene mapping and pathway analysis identified regions in the axon initial segment (AIS), node of Ranvier, cell periphery, cleavage furrow, cell surface furrow, and stress fiber. In conclusion, our study has identified a number of DMRs and lncRNA-associated DNA methylation regions in metformin-treated T2DM that are potential targets for therapeutic monitoring in patients with diabetes.

17.
Toxicol In Vitro ; 57: 211-216, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30876885

RESUMO

Cellular adaptation to hypoxia is controlled by hypoxia-inducible factor 1α (HIF1α), a transcription factor activated in response to oxygen tension, reactive oxygen species (ROS) and inflammation. Overexpression of HIF1α and HSP90 has been associated with cancer induction. Ochratoxin A (OTA), a mycotoxin contaminant of food and beverages, has been linked to renal tumours and progressive nephropathies, inflammation and pro-oxidation. The aim of this study was to examine the effect of OTA on hypoxic and transformative regulators in human embryonic kidney (HEK293) cells. We evaluated the protein expression of HIF1α, HSP90 and PDK1 (western blotting), mRNA expression of HIF1α, VEGF, EPO and TGFß (qPCR), and ATP levels (luminometry) in HEK293 cells exposed to a range of OTA concentrations (0.125 µM-0.5 µM) over two time periods (24 h and 48 h). After 24 h, OTA increased HIF1α protein (p < 0.005) and EPO gene expression (p < 0.05), while VEGF and TGFß was significantly increased at 48 h. We also observed a correlation between PDK1 expression and ATP levels. In conclusion, OTA disrupts hypoxia regulation, modulates metabolic activity, and alters growth signalling (VEGF, TGFß), which may lead to tumourigenesis.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Ocratoxinas/toxicidade , Trifosfato de Adenosina/metabolismo , Biomarcadores/metabolismo , Hipóxia Celular/fisiologia , Células Epiteliais/metabolismo , Eritropoetina/genética , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Fator de Crescimento Transformador beta/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética
18.
Toxicon ; 137: 48-53, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28712913

RESUMO

Ochratoxin A (OTA), a common contaminant of grain and fruit and known carcinogen, has been linked to impaired antioxidant response and cellular repair. The effect of OTA on inflammation in cells has not been explored. This study investigated OTA's influence on inflammatory mediators using a range of OTA concentrations (0.5 µM (sub-IC50), 1.2 µm (IC50) and 2 µm (supra-IC50)) on human embryonic kidney (HEK293) cells over 24hr. The markers of inflammation in HEK293 cells were evaluated using the following techniques: western blotting (phosphorylated (p-)NFκB (Ser536), p-IKK (Ser176/180) and p-p53 (Ser392), total NFκB, IKK, IκBα and p53), luminometry (caspases 1, 3/7, 8, 9, ATP) and ELISA to determine IL-1ß levels. The results indicate increased activation of the inflammatory pathway in the sub-IC50 concentration, evidenced by significant increases in p-NFκB (p = 0.0006). The IC50 concentration indicates decreased inflammatory induction supported by decreased levels of IL-1ß and caspase 1 (p = 0.0186 and p = 0.0068 respectively) with decreased IKK and increased IκBα (p = 0.0046 and p = 0.0006 respectively). Furthermore, a decrease in inflammatory pathway activation was seen in O3 (increased IκBα, p < 0.05) coupled with increased apoptosis via elevated caspase 3/7 (p = 0.0002), 8 (p = 0.0011) and 9 activity (p = 0.0002); as well as decreased ATP levels. This data suggests a new mechanism of OTA toxicity and its involvement in inflammation, kidney disease and fibrosis.


Assuntos
Apoptose/efeitos dos fármacos , Inflamação/induzido quimicamente , Ocratoxinas/toxicidade , Caspases/metabolismo , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo
19.
J Cell Biochem ; 116(12): 2947-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26095584

RESUMO

Ochratoxin A (OTA) is a nephrotoxic mycotoxin produced by Aspergillus and Penicillium fungi. It contaminates human and animal food products, and chronic exposure is associated with renal fibrosis in humans (Balkan endemic nephropathy). Resveratrol, a phytoalexin, possesses anti-cancer and antioxidant properties. We investigated the mechanism of cellular oxidative stress induced by OTA, and the effect of resveratrol in human embryonic kidney (HEK293) cells over 24 and 48 h. Cells were exposed to OTA [IC50 = 1.5 µM (24 h) and 9.4 µM (48 h) determined using MTT assay] and 25 µM resveratrol. Glutathione was quantified by luminometry and gene expression of Nrf2 and OGG1 was determined by qPCR. Protein expression of Nrf2, LonP1, SIRT3, and pSIRT1 was assessed by Western blot, DNA damage (comet assay), and intracellular reactive oxygen species (flow cytometry). At 24 h, resveratrol increased mRNA expression of the DNA repair enzyme, OGG1 (P < 0.05), whereas OTA and OTA+resveratrol significantly decreased OGG1 expression (P < 0.05). OGG1 expression increased during 48-h exposure to resveratrol and OTA+resveratrol (P < 0.05). Comet tail lengths doubled in 48-h OTA-treated cells, whereas at both time periods, OTA+resveratrol yielded shorter comet tails (P < 0.0001). During 24- and 48-h exposure, OTA, resveratrol, and OTA+resveratrol significantly decreased mRNA expression of Nrf2 (P < 0.05). Luminometry analysis of GSH revealed an increase by OTA+resveratrol for 24 and 48 h (P < 0.05 and P < 0.001, respectively). Western blot analysis showed decreased Nrf2 protein expression during 24-h exposure, but increased Nrf2 expression during 48 h. LonP1 protein expression increased during 24-h exposure to OTA (P < 0.05) and OTA+resveratrol (P < 0.0011) and during 48-h exposure to resveratrol (P < 0.0005).


Assuntos
Nefropatia dos Bálcãs/tratamento farmacológico , Ocratoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Estilbenos/administração & dosagem , Proteases Dependentes de ATP/biossíntese , Apoptose/efeitos dos fármacos , Aspergillus/patogenicidade , Nefropatia dos Bálcãs/patologia , Dano ao DNA , DNA Glicosilases/biossíntese , Microbiologia de Alimentos , Células HEK293 , Humanos , Proteínas Mitocondriais/biossíntese , Penicillium/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Sesquiterpenos/administração & dosagem , Fitoalexinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA