Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(3)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801544

RESUMO

The removal of mycotoxins from contaminated feed using lactic acid bacteria (LAB) has been proposed as an inexpensive, safe, and promising mycotoxin decontamination strategy. In this study, viable and heat-inactivated L. acidophilus CIP 76.13T and L. delbrueckii subsp. bulgaricus CIP 101027T cells were investigated for their ability to remove aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEA), and deoxynivalenol (DON) from MRS medium and PBS buffer over a 24 h period at 37 °C. LAB decontamination activity was also assessed in a ZEA-contaminated liquid feed (LF). Residual mycotoxin concentrations were determined by UHPLC-FLD/DAD analysis. In PBS, viable L. acidophilus CIP 76.13T and L. delbrueckii subsp. bulgaricus CIP 101027T cells removed up to 57% and 30% of ZEA and DON, respectively, while AFB1 and OTA reductions were lower than 15%. In MRS, 28% and 33% of ZEA and AFB1 were removed, respectively; OTA and DON reductions were small (≤15%). Regardless of the medium, heat-inactivated cells produced significantly lower mycotoxin reductions than those obtained with viable cells. An adsorption mechanism was suggested to explain the reductions in AFB1 and OTA, while biodegradation could be responsible for the removal of ZEA and DON. Both viable LAB strains reduced ZEA by 23% in contaminated LF after 48 h of incubation. These findings suggest that LAB strains of L. acidophilus CIP 76.13T and L. delbrueckii subsp. bulgaricus CIP 101027T may be applied in the feed industry to reduce mycotoxin contamination.


Assuntos
Ração Animal/microbiologia , Microbiologia de Alimentos , Fungos/metabolismo , Lactobacillus acidophilus/metabolismo , Lactobacillus delbrueckii/metabolismo , Micotoxinas/metabolismo , Adsorção , Animais , Fungos/crescimento & desenvolvimento , Humanos , Inativação Metabólica , Lactobacillus acidophilus/isolamento & purificação , Lactobacillus delbrueckii/isolamento & purificação , Viabilidade Microbiana , Sus scrofa , Urina/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA