Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8272, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092738

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that exist on a clinico-pathogenetic spectrum, designated ALS/FTD. The most common genetic cause of ALS/FTD is expansion of the intronic hexanucleotide repeat (GGGGCC)n in C9orf72. Here, we investigate the formation of nucleic acid secondary structures in these expansion repeats, and their role in generating condensates characteristic of ALS/FTD. We observe significant aggregation of the hexanucleotide sequence (GGGGCC)n, which we associate to the formation of multimolecular G-quadruplexes (mG4s) by using a range of biophysical techniques. Exposing the condensates to G4-unfolding conditions leads to prompt disassembly, highlighting the key role of mG4-formation in the condensation process. We further validate the biological relevance of our findings by detecting an increased prevalence of G4-structures in C9orf72 mutant human motor neurons when compared to healthy motor neurons by staining with a G4-selective fluorescent probe, revealing signal in putative condensates. Our findings strongly suggest that RNA G-rich repetitive sequences can form protein-free condensates sustained by multimolecular G-quadruplexes, highlighting their potential relevance as therapeutic targets for C9orf72 mutation-related ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Quadruplex G , Humanos , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/genética , RNA/genética , RNA/química , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética
2.
EMBO J ; 42(22): e114334, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37781931

RESUMO

Sequences that form DNA secondary structures, such as G-quadruplexes (G4s) and intercalated-Motifs (iMs), are abundant in the human genome and play various physiological roles. However, they can also interfere with replication and threaten genome stability. Multiple lines of evidence suggest G4s inhibit replication, but the underlying mechanism remains unclear. Moreover, evidence of how iMs affect the replisome is lacking. Here, we reconstitute replication of physiologically derived structure-forming sequences to find that a single G4 or iM arrest DNA replication. Direct single-molecule structure detection within solid-state nanopores reveals structures form as a consequence of replication. Combined genetic and biophysical characterisation establishes that structure stability and probability of structure formation are key determinants of replisome arrest. Mechanistically, replication arrest is caused by impaired synthesis, resulting in helicase-polymerase uncoupling. Significantly, iMs also induce breakage of nascent DNA. Finally, stalled forks are only rescued by a specialised helicase, Pif1, but not Rrm3, Sgs1, Chl1 or Hrq1. Altogether, we provide a mechanism for quadruplex structure formation and resolution during replication and highlight G4s and iMs as endogenous sources of replication stress.


Assuntos
DNA , Quadruplex G , Humanos , Genoma Humano , Nucleotidiltransferases , Replicação do DNA
3.
Adv Mater ; 35(33): e2301562, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37156014

RESUMO

State-of-the-art bottom-up synthetic biology allows to replicate many basic biological functions in artificial-cell-like devices. To mimic more complex behaviors, however, artificial cells would need to perform many of these functions in a synergistic and coordinated fashion, which remains elusive. Here, a sophisticated biological response is considered, namely the capture and deactivation of pathogens by neutrophil immune cells, through the process of netosis. A consortium consisting of two synthetic agents is designed-responsive DNA-based particles and antibiotic-loaded lipid vesicles-whose coordinated action mimics the sought immune-like response when triggered by bacterial metabolism. The artificial netosis-like response emerges from a series of interlinked sensing and communication pathways between the live and synthetic agents, and translates into both physical and chemical antimicrobial actions, namely bacteria immobilization and exposure to antibiotics. The results demonstrate how advanced life-like responses can be prescribed with a relatively small number of synthetic molecular components, and outlines a new strategy for artificial-cell-based antimicrobial solutions.


Assuntos
Anti-Infecciosos , Células Artificiais , Bactérias , Antibacterianos/farmacologia , Células Artificiais/metabolismo , Biologia Sintética
4.
Sci Rep ; 13(1): 6963, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117169

RESUMO

Focused ultrasound and microbubbles can non-invasively and locally deliver therapeutics and imaging agents across the blood-brain barrier. Uniform treatment and minimal adverse bioeffects are critical to achieve reliable doses and enable safe routine use of this technique. Towards these aims, we have previously designed a rapid short-pulse ultrasound sequence and used it to deliver a 3 kDa model agent to mouse brains. We observed a homogeneous distribution in delivery and blood-brain barrier closing within 10 min. However, many therapeutics and imaging agents are larger than 3 kDa, such as antibody fragments and antisense oligonucleotides. Here, we evaluate the feasibility of using rapid short-pulses to deliver higher-molecular-weight model agents. 3, 10 and 70 kDa dextrans were successfully delivered to mouse brains, with decreasing doses and more heterogeneous distributions with increasing agent size. Minimal extravasation of endogenous albumin (66.5 kDa) was observed, while immunoglobulin (~ 150 kDa) and PEGylated liposomes (97.9 nm) were not detected. This study indicates that rapid short-pulses are versatile and, at an acoustic pressure of 0.35 MPa, can deliver therapeutics and imaging agents of sizes up to a hydrodynamic diameter between 8 nm (70 kDa dextran) and 11 nm (immunoglobulin). Increasing the acoustic pressure can extend the use of rapid short-pulses to deliver agents beyond this threshold, with little compromise on safety. This study demonstrates the potential for deliveries of higher-molecular-weight therapeutics and imaging agents using rapid short-pulses.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Camundongos , Animais , Sistemas de Liberação de Medicamentos/métodos , Camundongos Endogâmicos C57BL , Encéfalo/diagnóstico por imagem , Barreira Hematoencefálica
5.
Chem Commun (Camb) ; 58(92): 12753-12762, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36281554

RESUMO

Guanine-rich DNA sequences are known to fold into secondary structures called G-quadruplexes (G4s), which can form from either individual DNA strands (intra-molecular) or multiple DNA strands (inter-molecular, iG4s). Intra-molecular G4s have been the object of extensive biological investigation due to their enrichment in gene-promoters and telomers. On the other hand, iG4s have never been considered in biological contexts, as the interaction between distal sequences of DNA to form an iG4 in cells was always deemed as highly unlikely. In this feature article, we challenge this dogma by presenting our recent discovery of the first human protein (CSB) displaying astonishing picomolar affinity and binding selectivity for iG4s. These findings suggest potential for iG4 structures to form in cells and highlight the need of further studies to unravel the fundamental biological roles of these inter-molecular DNA structures. Furthermore, we discuss how the potential for formation of iG4s in neuronal cells, triggered by repeat expansions in the C9orf72 gene, can lead to the formation of nucleic-acids based pathological aggregates in neurodegenerative diseases like ALS and FTD. Finally, based on our recent work on short LNA-modified probes, we provide a prespective on how the rational design of G4-selective chemical tools can be leveraged to further elucidate the biological relevance of iG4 structures in the context of ageing-related diseases.


Assuntos
Quadruplex G , Humanos , DNA/química , Telômero , Guanina , Estrutura Molecular
6.
Nucleic Acids Res ; 49(15): 8419-8431, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34255847

RESUMO

It has been >20 years since the formation of G-quadruplex (G4) secondary structures in gene promoters was first linked to the regulation of gene expression. Since then, the development of small molecules to selectively target G4s and their cellular application have contributed to an improved understanding of how G4s regulate transcription. One model that arose from this work placed these non-canonical DNA structures as repressors of transcription by preventing polymerase processivity. Although a considerable number of studies have recently provided sufficient evidence to reconsider this simplistic model, there is still a misrepresentation of G4s as transcriptional roadblocks. In this review, we will challenge this model depicting G4s as simple 'off switches' for gene expression by articulating how their formation has the potential to alter gene expression at many different levels, acting as a key regulatory element perturbing the nature of epigenetic marks and chromatin architecture.


Assuntos
Epigênese Genética , Quadruplex G , Regulação da Expressão Gênica/genética , Transcrição Gênica , Cromatina/genética , DNA Polimerase Dirigida por DNA/genética , Humanos , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética
7.
Chem Commun (Camb) ; 56(63): 8940-8943, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32638724

RESUMO

G-quadruplexes (G4s) are non-canonical DNA secondary structures. The identification of selective tools to probe individual G4s over the ∼700 000 found in the human genome is key to unravel the biological significance of specific G4s. We took inspiration from a crystal structure of the bovine DHX36 helicase bound to the G4 formed in the promoter region of the oncogene c-MYC to identify a short peptide that preferentially binds MYC G4 with nM affinity over a small panel of parallel and non-parallel G4s tested.


Assuntos
Quadruplex G , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Sequência de Aminoácidos , Animais , Bovinos , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Polarização de Fluorescência , Humanos , Conformação de Ácido Nucleico , Peptídeos/química , Regiões Promotoras Genéticas , Ligação Proteica
8.
Chem Commun (Camb) ; 56(9): 1317-1324, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31904034

RESUMO

G-quadruplexes are nucleic acids secondary structures that can be formed in guanine-rich sequences. More than 30 years ago, their formation was first observed in telomeric DNA. Since then, a number of other sequences capable of forming G-quadruplex structures have been described and increasing evidence supporting their formation in the context of living cells has been accumulated. To fully underpin the biological significance of G-quadruplexes and their potential as therapeutic targets, several chemical-biology tools and methods have been developed to map and visualise these nucleic acids secondary structures in human cells. In this review, we critically present the most relevant methods developed to investigate G-quadruplex prevalence in human cells and to study their biological functions, presenting the next key chemical-biology challenges that need to be addressed to fully unravel G-quadruplex mediated biology and their therapeutic potential.


Assuntos
DNA/química , Quadruplex G , Genoma Humano , Sondas Moleculares/química , RNA/química , DNA/genética , Humanos , Ligação de Hidrogênio , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA