Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37586764

RESUMO

BACKGROUND: Ovarian adenocarcinoma (OVAD) frequently metastasizes to the peritoneal cavity and manifests by the formation of ascites, which constitutes a tumor-promoting microenvironment. In the peritoneal cavity, two developmentally, phenotypically and functionally distinct macrophage subsets, immunocompetent large peritoneal macrophages (LPM) and immunosuppressive small peritoneal macrophages (SPM), coexist. Because peroxisome proliferator-activated receptor γ (PPARγ) is a critical factor participating in macrophage differentiation and cooperates with CCAAT/enhancer binding protein ß (C/EBPß), a transcription factor essential for SPM-to-LPM differentiation, PPARγ could be also involved in the regulation of SPM/LPM balance and could be a promising therapeutic target. METHODS: To evaluate the 15(S)-hydroxyeicosatetraenoic acid (HETE), a PPARγ endogenous ligand, impact on ovarian tumor growth, we intraperitoneally injected 15(S)-HETE into a murine ovarian cancer model. This experimental model consists in the intraperitoneally injection of ID8 cells expressing luciferase into syngeneic C57BL/6 female mice. This ID8 orthotopic mouse model is a well-established experimental model of end-stage epithelial OVAD. Tumor progression was monitored using an in vivo imaging system. Peritoneal immune cells in ascites were analyzed by flow cytometry and cell sorting. To determine whether the impact of 15(S)-HETE in tumor development is mediated through the macrophages, these cells were depleted by injection of liposomal clodronate. To further dissect how 15(S)-HETE mediated its antitumor effect, we assessed the tumor burden in tumor-bearing mice in which the PPARγ gene was selectively disrupted in myeloid-derived cells and in mice deficient of the recombination-activating gene Rag2. Finally, to validate our data in humans, we isolated and treated macrophages from ascites of individuals with OVAD. RESULTS: Here we show, in the murine experimental model of OVAD, that 15(S)-HETE treatment significantly suppresses the tumor growth, which is associated with the differentiation of SPM into LPM and the LPM residency in the peritoneal cavity. We demonstrate that C/EBPß and GATA6 play a central role in SPM-to-LPM differentiation and in LPM peritoneal residence through PPARγ activation during OVAD. Moreover, this SPM-to-LPM switch is associated with the increase of the effector/regulatory T-cell ratio. Finally, we report that 15(S)-HETE attenuates immunosuppressive properties of human ovarian tumor-associated macrophages from ascites. CONCLUSION: Altogether, these results promote PPARγ as a potential therapeutic target to restrain OVAD development and strengthen the use of PPARγ agonists in anticancer therapy.


Assuntos
Adenocarcinoma , Neoplasias Ovarianas , PPAR gama , Animais , Feminino , Humanos , Camundongos , Ascite , Carcinoma Epitelial do Ovário , Terapia de Imunossupressão , Imunossupressores , Macrófagos Peritoneais , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/tratamento farmacológico , Microambiente Tumoral
2.
J Immunother Cancer ; 8(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32503947

RESUMO

BACKGROUND: Besides the interest of an early detection of ovarian cancer, there is an urgent need for new predictive and prognostic biomarkers of tumor development and cancer treatment. In healthy patients, circulating blood monocytes are typically subdivided into classical (85%), intermediate (5%) and non-classical (10%) populations. Although these circulating monocyte subsets have been suggested as biomarkers in several diseases, few studies have investigate their potential as a predictive signature for tumor immune status,tumor growth and treatment adaptation. METHODS: In this study, we used a homogeneous cohort of 28 chemotherapy-naïve patients with ovarian cancer to evaluate monocyte subsets as biomarkers of the ascites immunological status. We evaluated the correlations between circulating monocyte subsets and immune cells and tumor burden in peritoneal ascites. Moreover, to validate the use of circulating monocyte subsets tofollow tumor progression and treatment response, we characterized blood monocytes from ovarian cancer patients included in a phase 1 clinical trial at baseline and following murlentamab treatment. RESULTS: We demonstrate here a robust expansion of the intermediate blood monocytes (IBMs) in ovarian cancer patients. We establish a significant positive correlation between IBM percentage and tumor-associate macrophages with a CCR2high/CD163high/CD206high/CD86lowprofile. Moreover, IBM expansion is associated with a decreased effector/regulatory T-cell ratio in ascites and with the presence of soluble immunosuppressive mediators. We also establish that IBM proportion positively correlates with the peritoneum tumor burden. Finally, the study of IBMs in patients with ovarian cancer under immunotherapy during the phase clinical trial supports IBMs to follow the evolution of tumor development and the treatment adaptation. CONCLUSIONS: This study, which links IBM level with immunosuppression and tumor burden in peritoneum, identifies IBMs as apotential predictive signature of ascites immune status and as a biomarker ofovarian cancer development and treatment response. TRIAL REGISTRATION NUMBER: EudraCT: 2015-004252-22 NCT02978755.


Assuntos
Ascite/genética , Biomarcadores Tumorais/metabolismo , Imunoterapia/métodos , Receptores de Lipopolissacarídeos/metabolismo , Monócitos/metabolismo , Receptores de IgG/metabolismo , Progressão da Doença , Feminino , Humanos , Masculino , Microambiente Tumoral
3.
Front Immunol ; 8: 1650, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250064

RESUMO

Despite the growing knowledge with regard to the immunomodulatory properties of host defense peptides, their impact on macrophage differentiation and on its associated microbicidal functions is still poorly understood. Here, we demonstrated that the P17, a new cationic antimicrobial peptide from ant venom, induces an alternative phenotype of human monocyte-derived macrophages (h-MDMs). This phenotype is characterized by a C-type lectin receptors (CLRs) signature composed of mannose receptor (MR) and Dectin-1 expression. Concomitantly, this activation is associated to an inflammatory profile characterized by reactive oxygen species (ROS), interleukin (IL)-1ß, and TNF-α release. P17-activated h-MDMs exhibit an improved capacity to recognize and to engulf Candida albicans through the overexpression both of MR and Dectin-1. This upregulation requires arachidonic acid (AA) mobilization and the activation of peroxisome proliferator-activated receptor gamma (PPARγ) nuclear receptor through the leukotriene B4 (LTB4) production. AA/LTB4/PPARγ/Dectin-1-MR signaling pathway is crucial for P17-mediated anti-fungal activity of h-MDMs, as indicated by the fact that the activation of this axis by P17 triggered ROS production and inflammasome-dependent IL-1ß release. Moreover, we showed that the increased anti-fungal immune response of h-MDMs by P17 was dependent on intracellular calcium mobilization triggered by the interaction of P17 with pertussis toxin-sensitive G-protein-coupled receptors on h-MDMs. Finally, we also demonstrated that P17-treated mice infected with C. albicans develop less severe gastrointestinal infection related to a higher efficiency of their macrophages to engulf Candida, to produce ROS and IL-1ß and to kill the yeasts. Altogether, these results identify P17 as an original activator of the fungicidal response of macrophages that acts upstream PPARγ/CLRs axis and offer new immunomodulatory therapeutic perspectives in the field of infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA