Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38675373

RESUMO

Benzimidazole-based pyrrole/piperidine analogs (1-26) were synthesized and then screened for their acetylcholinesterase and butyrylcholinesterase activities. All the analogs showed good to moderate cholinesterase activities. Synthesized compounds (1-13) were screened in cholinesterase enzyme inhibition assays and showed AChE activities in the range of IC50 = 19.44 ± 0.60 µM to 36.05 ± 0.4 µM against allanzanthane (IC50 = 16.11 ± 0.33 µM) and galantamine (IC50 = 19.34 ± 0.62 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 21.57 ± 0.61 µM to 39.55 ± 0.03 µM as compared with standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Similarly, synthesized compounds (14-26) were also subjected to tests to determine their in vitro AChE inhibitory activities, and the results obtained corroborated that all the compounds showed varied activities in the range of IC50 = 22.07 ± 0.13 to 42.01 ± 0.02 µM as compared to allanzanthane (IC50 = 20.01 ± 0.12 µM) and galantamine (IC50 = 18.05 ± 0.31 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 26.32 ± 0.13 to 47.03 ± 0.15 µM as compared to standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Binding interactions of the most potent analogs were confirmed through molecular docking studies. The active analogs 2, 4, 10 and 13 established numerous interactions with the active sites of targeted enzymes, with docking scores of -10.50, -9.3, -7.73 and -7.8 for AChE and -8.97, -8.2, -8.20 and -7.6 for BuChE, respectively.

2.
J Biomol Struct Dyn ; 42(6): 3118-3127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37211867

RESUMO

Helicobacter pylori causes severe stomach disorders and the use of enzyme inhibitors for treatment is one of the possible therapies. The great biological potential of imine analogs as urease inhibitors has been the focus of researchers in past years. In this regard, we have synthesized twenty-one derivatives of dichlorophenyl hydrazide. These compounds were characterized by different spectroscopic techniques i.e. NMR and HREI-MS. Compounds 2 and 10 were found to be the most active in the series. Structure-activity relationship has been established for all compounds based on different substituents attached to the phenyl ring that play a vital role in enzyme inhibition. From the structure-activity relationship, it has been observed that these analogs showed excellent potential for urease and can be an alternate therapy in the future. The molecular docking study was performed to further explore the binding interactions of synthesized analogs with enzyme active sites.Communicated by Ramaswamy H. Sarma.


Assuntos
Hidrazinas , Urease , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Hidrazinas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estrutura Molecular
3.
Saudi Pharm J ; 31(11): 101823, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37965293

RESUMO

Thymidine phosphorylase (TP) is an angiogenic enzyme. It is crucial for the development, invasion and metastasis of tumors as well as angiogenesis. In our current research, we examine how structurally changing bis-thiadiazole bearing bis-schiff bases affects their ability to inhibit TP. Through the oxidative cyclization of pyridine-based bis-thiosemicarbazone with iodine, a series of fourteen analogs of bis-thiadiazole-based bis-imines with pyridine moiety were developed. Newly synthesized scaffolds were assessed in vitro for their thymidine phosphorylase inhibitory potential and showed moderate to good inhibition profile. Eleven scaffolds such as 4a-4d,4f-4 h and 4j-4 m were discovered to be more effective than standard drug at inhibiting the thymidine phosphorylase enzyme with IC50 values of 1.16 ± 1.20, 1.77 ± 1.10, 2.48 ± 1.30, 12.54 ± 1.60, 14.63 ± 1.70, 15.53 ± 1.80, 17.47 ± 1.70, 18.98 ± 1.70, 19.53 ± 1.50, 22.73 ± 2.40 and 24.87 ± 2.80 respectively, while remaining three analogs such as 4n, 4i and 4ewere found to be more potent, but they were less potent than the standard drug. All analogs underwent SAR studies based on the pattern of substitutions around the aryl part of the bis-thiadiazole skeleton. The most active analogs in the synthesized series were then molecular docking study performed to investigate their interactions of active part of enzyme. The results showed that remarkable interactions were exhibited by these analogs with the targeted enzymes active sites. Furthermore, to confirm the structure of synthesized analogs by employing spectroscopic tools such as HREI-MS and NMR.

4.
Molecules ; 28(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894494

RESUMO

Alzheimer's disease (AD) is a degenerative neurological condition that severely affects the elderly and is clinically recognised by a decrease in cognition and memory. The treatment of this disease has drawn considerable attention and sparked increased interest among the researchers in this field as a result of a number of factors, including an increase in the population of patients over time, a significant decline in patient quality of life, and the high cost of treatment and care. The current work was carried out for the synthesis of benzimidazole-oxazole hybrid derivatives as efficient Alzheimer's inhibitors and as a springboard for investigating novel anti-chemical Alzheimer's prototypes. The inhibition profiles of each synthesised analogue against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes were assessed. All the synthesized benzimidazole-based oxazole analogues displayed a diverse spectrum of inhibitory potentials against targeted AChE and BuChE enzymes when compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 M and 4.50 ± 0.11 µM, respectively). The most active AChE and BuChE analogues were discovered to be analogues 9 and 14, with IC50 values of 0.10 ± 0.050 and 0.20 ± 0.050 µM (against AChE) and 0.20 ± 0.050 and 0.30 ± 0.050 µM (against BuChE), respectively. The nature, number, position, and electron-donating and -withdrawing effects on the phenyl ring were taken into consideration when analysing the structure-activity relationship (SAR). Molecular docking studies were also carried out on the active analogues to find out how amino acids bind to the active sites of the AChE and BuChE enzymes that were being studied.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Humanos , Idoso , Acetilcolinesterase/metabolismo , Butirilcolinesterase/química , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Qualidade de Vida , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Benzimidazóis/química , Estrutura Molecular
5.
ACS Omega ; 8(25): 22508-22522, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396210

RESUMO

There is an increasing prevalence of diabetes mellitus throughout the world, and new compounds are necessary to combat this. The currently available antidiabetic therapies are long-term complicated and side effect-prone, and this has led to a demand for more affordable and more effective methods of tackling diabetes. Research is focused on finding alternative medicinal remedies with significant antidiabetic efficacy as well as low adverse effects. In this research work, we have focused our efforts to synthesize a series of 1,2,4-triazole-based bis-hydrazones and evaluated their antidiabetic properties. In addition, the precise structures of the synthesized derivatives were confirmed with the help of various spectroscopic techniques including 1H-NMR, 13C-NMR, and HREI-MS. To find the antidiabetic potentials of the synthesized compounds, in vitro α-glucosidase and α-amylase inhibitory activities were characterized using acarbose as the reference standard. From structure-activity (SAR) analysis, it was confirmed that any variation found in inhibitory activities of both α-amylase and α-glucosidase enzymes was due to the different substitution patterns of the substituent(s) at variable positions of both aryl rings A and B. The results of the antidiabetic assay were very encouraging and showed moderate to good inhibitory potentials with IC50 values ranging from 0.70 ± 0.05 to 35.70 ± 0.80 µM (α-amylase) and 1.10 ± 0.05 to 30.40 ± 0.70 µM (α-glucosidase). The obtained results were compared to those of the standard acarbose drug (IC50 = 10.30 ± 0.20 µM for α-amylase and IC50 = 9.80 ± 0.20 µM for α-glucosidase). Specifically, compounds 17, 15, and 16 were found to be significantly active with IC50 values of 0.70 ± 0.05, 1.80 ± 0.10, and 2.10 ± 0.10 µM against α-amylase and 1.10 ± 0.05, 1.50 ± 0.05, and 1.70 ± 0.10 µM against α-glucosidase, respectively. These findings reveal that triazole-containing bis-hydrazones act as α-amylase and α-glucosidase inhibitors, which help develop novel therapeutics for treating type-II diabetes mellitus and can act as lead molecules in drug discovery as potential antidiabetic agents.

6.
iScience ; 26(7): 107193, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485353

RESUMO

Azoospermia is a significant cause of male infertility, with non-obstructive azoospermia (NOA) being the most severe type of spermatogenic failure. NOA is mostly caused by congenital factors, but our understanding of its genetic causes is very limited. Here, we identified a frameshift variant (c.201_202insAC, p.Tyr68Thrfs∗17) and two nonsense variants (c.1897C>T, p.Gln633∗; c.2005C>T, p.Gln669∗) in KCTD19 (potassium channel tetramerization domain containing 19) from two unrelated infertile Chinese men and a consanguineous Pakistani family with three infertile brothers. Testicular histological analyses revealed meiotic metaphase I (MMI) arrest in the affected individuals. Mice modeling KCTD19 variants recapitulated the same MMI arrest phenotype due to severe disrupted individualization of MMI chromosomes. Further analysis showed a complete loss of KCTD19 protein in both Kctd19 mutant mouse testes and affected individual testes. Collectively, our findings demonstrate the pathogenicity of the identified KCTD19 variants and highlight an essential role of KCTD19 in MMI chromosome individualization.

7.
Saudi Pharm J ; 31(8): 101667, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37448838

RESUMO

Purpose: Ulcer is a serious disease that is caused due to different bacteria and over usage of various NSAIDs which caused to reduce the defensive system of stomach. Therefore, some novel series are needed to overcome these issues. Methods: Oxazole-based imidazopyridine scaffolds (4a-p) were designed and synthesized by two step reaction protocol and then subjected to urease inhibition profile (in vitro). All the newly afforded analogs (4a-p) were found potent and demonstrated moderate to significant inhibition profile. Results: Particularly, the analogs 4i (IC50 = 5.68 ± 1.66 µM), 4o (IC50 = 7.11 ± 1.24 µM), 4 g (IC50 = 9.41 ± 1.19 µM) and 4 h (IC50 = 10.45 ± 2.57 µM) were identified to be more potent than standard thiourea drug (IC50 = 21.37 ± 1.76 µM). Additionally, the variety of spectroscopic tools such as 1H NMR, 13C NMR and HREI-MS analysis were employed to confirm the precise structures of all the newly afforded analogs. Discussion: The structure-activity relationship (SAR) studies showed that analogs possess the substitution either capable of furnishing strong HB like -OH or had strong EW nature such as -CF3 & -NO2 groups displayed superior inhibitory potentials than the standard thiourea drug. A good PLI (protein-ligand interaction) profile was shown by most active analogs when subjected to molecular study against corresponding target with key significant interactions such as pi-pi stacking, pi-pi T shaped and hydrogen bonding.

8.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37259358

RESUMO

Twenty-one analogs were synthesized based on benzimidazole, incorporating a substituted benzaldehyde moiety (1-21). These were then screened for their acetylcholinesterase and butyrylcholinesterase inhibition profiles. All the derivatives except 13, 14, and 20 showed various inhibitory potentials, ranging from IC50 values of 0.050 ± 0.001 µM to 25.30 ± 0.40 µM against acetylcholinesterase, and 0.080 ± 0.001 µM to 25.80 ± 0.40 µM against butyrylcholinesterase, when compared with the standard drug donepezil (0.016 ± 0.12 µM and 0.30 ± 0.010 µM, against acetylcholinesterase and butyrylcholinesterase, respectively). Compound 3 in both cases was found to be the most potent compound due to the presence of chloro groups at the 3 and 4 positions of the phenyl ring. A structure-activity relationship study was performed for all the analogs except 13, 14, and 20, further, molecular dynamics simulations were performed for the top two compounds as well as the reference compound in a complex with acetylcholinesterase and butyrylcholinesterase. The molecular dynamics simulation analysis revealed that compound 3 formed the most stable complex with both acetylcholinesterase and butyrylcholinesterase, followed by compound 10. As compared to the standard inhibitor donepezil both compounds revealed greater stabilities and higher binding affinities for both acetylcholinesterase and butyrylcholinesterase.

9.
Clin Genet ; 104(5): 564-570, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37286336

RESUMO

Male infertility affects more than 20 million men worldwide and is a major public health concern. Male infertility has a strong genetic basis, particularly for those unexplained cases. Here, through genetic analysis of three Pakistani families having eight infertile men with normal parameters in routine semen analysis, we identified a novel ACTL7A variant (c.149_150del, p.E50Afs*6), recessively co-segregating with infertility in these three families. This variant leads to the loss of ACTL7A proteins in spermatozoa from patients. Transmission EM analyses revealed acrosome detachment from nuclei in 98.9% spermatozoa of patients. Interestingly, this ACTL7A variant was frequently detected in our sequenced Pakistani Pashtuns with a minor allele frequency of ~0.021 and all the carriers shared a common haplotype of about 240 kb flanking ACTL7A, indicating that it is likely originated from a single founder. Our findings reveal that a founder ACTL7A pathogenic variant confers a high genetic susceptibility for male infertility with normal routine semen parameters but acrosomal ultrastructural defects in Pakistani Pashtun descendants, and highlight that variants not rare should also be considered when trying to identify disease-causing variants in ethnic groups with the tradition of intra-ethnic marriages.


Assuntos
Acrossomo , Infertilidade Masculina , Humanos , Masculino , Infertilidade Masculina/genética , Paquistão , Sêmen , Espermatozoides/metabolismo
10.
ACS Omega ; 8(17): 15660-15672, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151487

RESUMO

Diabetes is also known as a critical and noisy disease. Hyperglycemia, that is, increased blood glucose level is a common effect of uncontrolled diabetes, and over a period of time can cause serious effects on health such as blood vessel damage and nervous system damage. However, many attempts have been made to find suitable and beneficial solutions to overcome diabetes. Considering this fact, we synthesized a novel series of indoline-2,3-dione-based benzene sulfonamide derivatives and evaluated them against α-glucosidase and α-amylase enzymes. Out of the synthesized sixteen compounds (1-16), only three compounds showed better results; the IC50 value was in the range of 12.70 ± 0.20 to 0.90 ± 0.10 µM for α-glucosidase against acarbose 11.50 ± 0.30 µM and 14.90 ± 0.20 to 1.10 ± 0.10 µM for α-amylase against acarbose 12.20 ± 0.30 µM. Among the series, only three compounds showed better inhibitory potential such as analogues 11 (0.90 ± 0.10 µM for α-glucosidase and 1.10 ± 0.10 µM for α-amylase), 1 (1.10 ± 0.10 µM for α-glucosidase and 1.30 ± 0.10 µM for α-amylase), and 6 (1.20 ± 0.10 µM for α-glucosidase and 1.60 ± 0.10 µM for α-amylase). Molecular modeling was performed to determine the binding affinity of active interacting residues against these enzymes, and it was found that benzenesulfonohydrazide derivatives can be indexed as suitable inhibitors for diabetes mellitus.

11.
Front Chem ; 11: 1125915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214481

RESUMO

The clinical significance of benzimidazole-containing drugs has increased in the current study, making them more effective scaffolds. These moieties have attracted strong research interest due to their diverse biological features. To examine their various biological significances, several research synthetic methodologies have recently been established for the synthesis of benzimidazole analogs. The present study aimed to efficiently and quickly synthesize a new series of benzimidazole analogs. Numerous spectroscopic techniques, including 1H-NMR, 13C-NMR, and HREI-MS, were used to confirm the synthesized compounds. To explore the inhibitory activity of the analogs against α-amylase and α-glucosidase, all derivatives (1-17) were assessed for their biological potential. Compared to the reference drug acarbose (IC50 = 8.24 ± 0.08 µM), almost all the derivatives showed promising activity. Among the tested series, analog 2 (IC50 = 1.10 ± 0.10 & 2.10 ± 0.10 µM, respectively) displayed better inhibitory activity. Following a thorough examination of the various substitution effects on the inhibitory capacity of α-amylase and α-glucosidase, the structure-activity relationship (SAR) was determined. We looked at the potential mechanism of how active substances interact with the catalytic cavity of the targeted enzymes in response to the experimental results of the anti-glucosidase and anti-amylase. Molecular docking provided us with information on the interactions that the active substances had with the various amino acid residues of the targeted enzymes for this purpose.

12.
Future Med Chem ; 15(5): 405-419, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013918

RESUMO

Aim: To synthesize pyrrolopyridine-based thiazolotriazoles as a novel class of α-amylase and α-glucosidase inhibitors and to determine their enzymatic kinetics. Methodology: Pyrrolopyridine-based thiazolotriazole analogs (1-24) were synthesized and characterized through proton nuclear magnetic resonance, carbon-13 nuclear magnetic resonance and high-resolution electron ionization mass spectrometry. Results: All synthesized analogs displayed good inhibitory potential of α-amylase and α-glucosidase ranging 17.65-70.7 µM and 18.15-71.97 µM, respectively, compared with the reference drug, acarbose (11.98 µM and 12.79 µM). Analog 3 was the most potent among the synthesized analogs, having α-amylase and α-glucosidase inhibitory activity at 17.65 and 18.15 µM, respectively. The structure-activity relationship and binding modes of interactions between selected analogs were confirmed via docking and enzymatic kinetics studies. The compounds (1-24) were tested for cytotoxicity against the 3T3 mouse fibroblast cell line and were observed to be nontoxic.


Assuntos
Diabetes Mellitus , Compostos Heterocíclicos , Animais , Camundongos , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Cinética , Inibidores de Glicosídeo Hidrolases/química , Relação Estrutura-Atividade , alfa-Amilases , Estrutura Molecular
13.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677616

RESUMO

Alzheimer's disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer's treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effects. Therefore, it is necessary to find a new therapeutic approach that completely treats Alzheimer's disease without many side effects. In this research project, we report the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1-21) as potent anti-Alzheimer's agents. Suitable characterization techniques were employed, and the density functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been employed to assess the electronic properties and anti-Alzheimer's potency of the analogs. All analogs exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency (IC50 = 0.10 ± 0.05 µM for AChE) and (IC50 = 0.20 ± 0.050 µM for BuChE) as compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship was established, and it mainly depends upon the nature, position, number, and electron-donating/-withdrawing effects of the substituent/s on the phenyl rings.


Assuntos
Doença de Alzheimer , Humanos , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Estrutura Molecular
14.
J Biomol Struct Dyn ; 41(21): 12077-12092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36695088

RESUMO

This work reports the convenient approach for the synthesis of thiazole based thiourea derivatives (1-21) from 2-bromo-1-(4-fluorophenyl)thiazole-1-one and phenyl isothiocyanates. The scope and diversity were achieved from readily available phenyl isothiocyanates. This protocol involves an oxidative C-S bond formation. Moreover, hybrid thiazole based thiourea scaffolds (1-21) according to literature known protocol were screened in vitro for anticancer Potential against breast cancer, antiglycation and antioxidant inhibitory profile. All newly developed scaffolds were showed moderate to good inhibitory potentials ranging from 0.10 ± 0.01 µM to 11.40 ± 0.20 µM, 64.20 ± 0.40 µM to 385.10 ± 1.70 µM and 8.90 ± 0.20 µM to 39.20 ± 0.50 µM against anticancer, antiglycation and antioxidant respectively. Among the series, compounds 12 (IC50 = 0.10 ± 0.01 µM), 10 (IC50 = 64.20 ± 0.40 µM) and 12 (IC50 = 8.90 ± 0.20 µM) with flouro substitution at phenyl ring of thiourea were identified to be the most potent among the series having excellent anticancer, antiglycation and antioxidant potential. The structure of all the newly synthetics scaffolds were confirmed by using different types of spectroscopic techniques such as HREI-MS, 1H- and 13C-NMR spectroscopy. To find structure-activity relationship, molecular docking studies were carried out to understand the binding mode of active inhibitors with active site of enzymes and results supported the experimental data.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Antioxidantes , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Tiazóis/farmacologia , Tiazóis/química , Relação Estrutura-Atividade , Tioureia/farmacologia , Isotiocianatos , Estrutura Molecular , Antineoplásicos/química
15.
J Biomol Struct Dyn ; 41(19): 9865-9878, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36404604

RESUMO

Acetylcholinesterase prevails in the healthy brain, with butyrylcholinesterase reflected to play a minor role in regulating brain acetylcholine (ACh) levels. However, BuChE activity gradually increases in patients with (AD), while AChE activity remains unaffected or decays. Both enzymes therefore represent legitimate therapeutic targets for ameliorating the cholinergic deficit considered to be responsible for the declines in cognitive, behavioural, and global functioning characteristic of AD. Current study described the synthesis of indole-based sulfonamide derivatives (1-23) and their biological activity. Synthesis of these scaffolds were achieved by mixing chloro-substituted indole bearing amine group with various substituted benzene sulfonyl chloride in pyridine, under refluxed condition to obtained desired products. All products were then evaluated for AchE and BuchE inhibitory potential compare with positive Donepezil as standard drug for both AchE and BchE having IC50 = 0.016 ± 0.12 and 0.30 ± 0.010 µM respectively. In this regard analog 9 was found potent having IC50 value 0.15 ± 0.050 µM and 0.20 ± 0.10 for both AchE and BuChE respectively. All other derivatives also found with better potential. All compounds were characterized by various techniques such as 1H, 13C-NMR and HREI-MS. In addition, biological activity was maintained to explore the bioactive nature of scaffolds and their protein-ligand interaction (PLI) was checked through molecular docking study.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade
16.
J Biomol Struct Dyn ; 41(5): 1649-1664, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34989316

RESUMO

We have synthesized benzo[d]oxazole derivatives (1-21) through a multistep reaction. Alteration in the structure of derivatives was brought in the last step via using various substituted aromatic aldehydes. In search of an anti-Alzheimer agent, all derivatives were evaluated against acetylcholinesterase and butyrylcholinesterase enzyme under positive control of standard drug donepezil (IC50 = 0.016 ± 0.12 and 4.5 ± 0.11 µM) respectively. In case of acetylcholinesterase enzyme inhibition, derivatives 8, 9 and 18 (IC50 = 0.50 ± 0.01, 0.90 ± 0.05 and 0.3 ± 0.05 µM) showed very promising inhibitory potentials. While in case of butyrylcholinesterase enzyme inhibition, most of the derivatives like 6, 8, 9, 13, 15, 18 and 19 (IC50 = 2.70 ± 0.10, 2.60 ± 0.10, 2.20 ± 0.10, 4.25 ± 0.10, 3.30 ± 0.10, 0.96 ± 0.05 and 3.20 ± 0.10 µM) displayed better inhibitory potential than donepezil. Moreover, derivative 18 is the most potent one among the series in both inhibitions. The binding interaction of derivatives with the active gorge of the enzyme was confirmed via a docking study. Furthermore, the binding interaction between derivatives and the active site of enzymes was correlated through the SAR study. Structures of all derivatives were confirmed through spectroscopic techniques such as 1H-NMR, 13C-NMR and HREI-MS, respectively.Communicated by Ramaswamy H. Sarma.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Butirilcolinesterase/metabolismo , Acetilcolinesterase/química , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Donepezila/farmacologia , Bases de Schiff/química , Simulação de Acoplamento Molecular , Estrutura Molecular
18.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364195

RESUMO

The current study was conducted to obtain hybrid analogues of indole-based thiadiazole derivatives (1-16) in which a number of reaction steps were involved. To examine their biological activity in the presence of the reference drug Donepezil (0.21 ± 0.12 and 0.30 ± 0.32 M, respectively), the inhibitory potentials of AChE and BuChE were determined for these compounds. Different substituted derivatives showing a varied range of inhibitory profiles, when compared to the reference drug, analogue 8 was shown to have potent activity, with IC50 values for AchE 0.15 ± 0.050 M and BuChE 0.20 ± 0.10, respectively, while other substituted compounds displayed good to moderate potentials. Varied spectroscopic techniques including 1H, 13CNMR and HREI-MS were used to identify the basic skeleton of these compounds. Furthermore, all analogues have a known structure-activity relationship (SAR), and molecular docking investigations have verified the binding interactions of molecule to the active site of enzymes.


Assuntos
Acetilcolinesterase , Tiadiazóis , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/química , Tiadiazóis/farmacologia , Tiadiazóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Indóis/farmacologia
19.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296520

RESUMO

Diabetes mellitus is one of the most chronic metabolic diseases. In the past few years, our research group has synthesized and evaluated libraries of heterocyclic analogs against α-glucosidase and α-amylase enzymes and found encouraging results. The current study comprises the evaluation of benzimidazole-bearing thiosemicarbazone as antidiabetic agents. A library of fifteen derivatives (7-21) was synthesized, characterized via different spectroscopic techniques such as HREI-MS, NMR, and screened against α-glucosidase and α-amylase enzymes. All derivatives exhibited excellent to good biological inhibitory potentials. Derivatives 19 (IC50 = 1.30 ± 0.20 µM and 1.20 ± 0.20 µM) and 20 (IC50 = 1.60 ± 0.20 µM and 1.10 ± 0.01 µM) were found to be the most potent among the series when compared with standard drug acarbose (IC50 = 11.29 ± 0.07 and 11.12 ± 0.15 µM, respectively). These derivatives may potentially serve as the lead candidates for the development of new therapeutic representatives. The structure-activity relationship was carried out for all molecules which are mainly based upon the pattern of substituent/s on phenyl rings. Moreover, in silico docking studies were carried out to investigate the active binding mode of selected derivatives with the target enzymes.


Assuntos
Inibidores de Glicosídeo Hidrolases , Tiossemicarbazonas , Inibidores de Glicosídeo Hidrolases/química , alfa-Amilases , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Acarbose , Tiossemicarbazonas/farmacologia , Relação Estrutura-Atividade , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Benzimidazóis/química , Estrutura Molecular
20.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234994

RESUMO

In this study, hybrid analogs of benzimidazole containing a thiazole moiety (1-17) were afforded and then tested for their ability to inhibit α-amylase and α-glucosidase when compared to acarbose as a standard drug. The recently available analogs showed a wide variety of inhibitory potentials that ranged between 1.31 ± 0.05 and 38.60 ± 0.70 µM (against α-amylase) and between 2.71 ± 0.10 and 42.31 ± 0.70 µM (against α-glucosidase) under the positive control of acarbose (IC50 = 10.30 ± 0.20 µM against α-amylase) (IC50 = 9.80 ± 0.20 µM against α-glucosidase). A structure-activity relationship (SAR) study was carried out for all analogs based on substitution patterns around both rings B and C respectively. It was concluded from the SAR study that analogs bearing either substituent(s) of smaller size (-F and Cl) or substituent(s) capable of forming hydrogen bonding (-OH) with the catalytic residues of targeted enzymes enhanced the inhibitory potentials. Therefore, analogs 2 (bearing meta-fluoro substitution), 3 (having para-fluoro substitution) and 4 (with ortho-fluoro group) showed enhanced potency when evaluated against standard acarbose drug with IC50 values of 4.10 ± 0.10, 1.30 ± 0.05 and 1.90 ± 0.10 (against α-amylase) and 5.60 ± 0.10, 2.70 ± 0.10 and 2.90 ± 0.10 µM (against α-glucosidase), correspondingly. On the other hand, analogs bearing substituent(s) of either a bulky nature (-Br) or that are incapable of forming hydrogen bonds (-CH3) were found to lower the inhibitory potentials. In order to investigate the binding sites for synthetic analogs and how they interact with the active areas of both targeted enzymes, molecular docking studies were also conducted on the potent analogs. The results showed that these analogs adopted many important interactions with the active areas of enzymes. The precise structure of the newly synthesized compounds was confirmed using several spectroscopic techniques as NMR and HREI-MS.


Assuntos
alfa-Amilases , alfa-Glucosidases , Acarbose/farmacologia , Benzimidazóis/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/química , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA