Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Stem Cells ; 13(3): 152-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021375

RESUMO

BACKGROUND: Replacing damaged organs or tissues and repairing damage by tissue engineering are attracting great interest today. A potentially effective method for bone remodeling involves combining nanofiber scaffolds with extracellular matrix (ECM), and growth factors. Today, electrospun PCL-based scaffolds are widely used for tissue engineering applications. METHODS: In this study, we used an electrospun polycaprolactone (PCL) scaffold coated with fibronectin (Fn), a ubiquitous ECM glycoprotein, to investigate the induction potential of this scaffold in osteogenesis with adipose-derived mesenchymal stem cells (AD-MSCs). RESULTS: Scanning electron microscopy (SEM) analysis showed that fibronectin, by binding to the membrane receptors of mesenchymal stem cells (MSCs), leads to their attachment and proliferation on the PCL scaffold and provides a suitable environment for osteogenesis. In addition, biochemical tests showed that fibronectin leads to increased calcium deposition. The results also showed that alkaline phosphatase activity was significantly higher in the PCL scaffold coated with fibronectin than in the control groups (PCL scaffold group and tissue culture polystyrene (TCPS) group) (P<0.05). Also, the analysis of quantitative reverse transcription PCR (qRT-PCR) data showed that the relative expression of bone marker genes such as osteonectin (ON), osteocalcin (OC), RUNX family transcription factor 2 (RUNX2), and collagen type I alpha 1 (COL1) was much higher in the cells seeded on the PCL/Fn scaffold than in the other groups (P<0.05). CONCLUSIONS: The results show that fibronectin has an increasing effect in accelerating bone formation and promising potential for use in bone tissue engineering.

2.
Eur J Pharmacol ; 971: 176527, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554932

RESUMO

Hypercholesterolemia is a critical risk factor for atherosclerosis, mostly attributed to lifestyle behavior such as diet. Recent advances have emphasized the critical effects of gastrointestinal bacteria in the pathology of hypercholesterolemia and atherosclerosis, suggesting that the gastrointestinal microbiome can therefore provide efficient therapeutic targets for preventing and treating atherosclerosis. Thus, interventions, such as probiotic therapy, aimed at altering the bacterial composition introduce a promising therapeutic procedure. In the current review, we will provide an overview of anti-atherogenic probiotics contributing to lipid-lowering, inhibiting atherosclerotic inflammation, and suppressing bacterial atherogenic metabolites.


Assuntos
Aterosclerose , Hipercolesterolemia , Hiperlipidemias , Probióticos , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/patologia , Colesterol/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA