Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 39(9): 3128-33, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15926562

RESUMO

To predict the persistency of a chemical in the environment, the chemical's physical-chemical properties and its reactivity in the environment need to be known or at least estimated. The partitioning of a chemical can be described on the basis of its water solubility, its octanol/water partitioning coefficient, and its vapor pressure. The mechanisms by which a chemical can be transformed may be categorized as being hydrolysis, oxidation, reduction, and photolysis. This study establishes a method for estimating the relative susceptibility of some potential environmental pollutants to undergo hydrolysis reactions. The method used the second-order rate constant for the reaction with sodium methoxide in methanol/N,N-dimethylformamide (DMF) as an indicator of relative susceptibility toward hydrolysis. The decabromodiphenyl ether is rapidly hydrolyzed, that is, undergoes nucleophilic aromatic substitution, while the rate of reaction of less brominated diphenyl ethers decreased by roughly a factor of 10 for each decrease in the level of bromination. Hexachlorobenzene was found to have a similar rate to a nonabromodiphenyl ether. 2,2-Bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT) was transformed to 2,2-bis(4-chlorophenyl)-1,1-dichloroethene (DDE) immediately under these conditions, while DDE showed no apparent reaction. The results show that chemicals that can undergo elimination reactions are rapidly transformed, as are perhalogenated chemicals that can undergo substitution reactions. These chemicals are not likely to persist in the environment, while those that did not show any observable reactivity under similar hydrolytic conditions may persist for a very long time.


Assuntos
Praguicidas/análise , Poluentes Químicos da Água/análise , Hidrólise , Cinética , Solubilidade
2.
Chemosphere ; 54(1): 117-26, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14559264

RESUMO

A method was developed for studies of the phototransformation at UV irradiation of aqueous solutions of tetrabromobisphenol A (TBBPA), tribromobisphenol A (TriBBPA), tetrachlorobisphenol A (TCBPA), 2,4-dichlorophenol at various pHs as well as 2-chlorophenol, 2-bromophenol, 3,4-dichlorophenol and bisphenol A at pH 11. The absorbance spectra of the compounds and the emission spectra of the light-source were determined and used to calculate disappearance quantum yields of the photochemical reactions that were taking place. No major differences between the disappearance quantum yields of TBBPA and TCBPA were observed at pH 10, while the disappearance quantum yield of TriBBPA was approximately two times higher. The rate of decomposition of TBBPA was six times higher at pH 8 than at pH 6. Identification of the degradation products of TBBPA and TriBBPA, by GC-MS analysis and by comparison to synthesised reference compounds, indicated that TBBPA and TriBBPA decompose via different mechanisms. Three isopropylphenol derivatives; 4-isopropyl-2,6-dibromophenol, 4-isopropylene-2,6-dibromophenol and 4-(2-hydroxyisopropyl)-2,6-dibromophenol, were identified as major degradation products of TBBPA while the major degradation product of TriBBPA was tentatively identified as 2-(2,4-cyclopentadienyl)-2-(3,5-dibromo-4-hydroxyphenyl)propane.


Assuntos
Fotoquímica/métodos , Bifenil Polibromatos/química , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Cinética , Fenóis/química , Bifenil Polibromatos/efeitos da radiação , Raios Ultravioleta , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA