Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1374408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659577

RESUMO

Cerebrovascular diseases and their sequalae, such as ischemic stroke, chronic cerebral hypoperfusion, and vascular dementia are significant contributors to adult disability and cognitive impairment in the modern world. Astrocytes are an integral part of the neurovascular unit in the CNS and play a pivotal role in CNS homeostasis, including ionic and pH balance, neurotransmission, cerebral blood flow, and metabolism. Astrocytes respond to cerebral insults, inflammation, and diseases through unique molecular, morphological, and functional changes, collectively known as reactive astrogliosis. The function of reactive astrocytes has been a subject of debate. Initially, astrocytes were thought to primarily play a supportive role in maintaining the structure and function of the nervous system. However, recent studies suggest that reactive astrocytes may have both beneficial and detrimental effects. For example, in chronic cerebral hypoperfusion, reactive astrocytes can cause oligodendrocyte death and demyelination. In this review, we will summarize the (1) roles of ion transporter cascade in reactive astrogliosis, (2) role of reactive astrocytes in vascular dementia and related dementias, and (3) potential therapeutic approaches for dementing disorders targeting reactive astrocytes. Understanding the relationship between ion transporter cascade, reactive astrogliosis, and cerebrovascular diseases may reveal mechanisms and targets for the development of therapies for brain diseases associated with reactive astrogliosis.

2.
CNS Neurosci Ther ; 30(3): e14654, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433018

RESUMO

BACKGROUND: Astrogliosis and white matter lesions (WML) are key characteristics of vascular contributions to cognitive impairment and dementia (VCID). However, the molecular mechanisms underlying VCID remain poorly understood. Stimulation of Na-K-Cl cotransport 1 (NKCC1) and its upstream kinases WNK (with no lysine) and SPAK (the STE20/SPS1-related proline/alanine-rich kinase) play a role in astrocytic intracellular Na+ overload, hypertrophy, and swelling. Therefore, in this study, we assessed the effect of SPAK inhibitor ZT-1a on pathogenesis and cognitive function in a mouse model of VCID induced by bilateral carotid artery stenosis (BCAS). METHODS: Following sham or BCAS surgery, mice were randomly assigned to receive either vehicle (DMSO) or SPAK inhibitor ZT-1a treatment regimen (days 14-35 post-surgery). Mice were then evaluated for cognitive functions by Morris water maze, WML by ex vivo MRI-DTI analysis, and astrogliosis/demyelination by immunofluorescence and immunoblotting. RESULTS: Compared to sham control mice, BCAS-Veh mice exhibited chronic cerebral hypoperfusion and memory impairments, accompanied by significant MRI DTI-detected WML and oligodendrocyte (OL) death. Increased activation of WNK-SPAK-NKCC1-signaling proteins was detected in white matter tissues and in C3d+ GFAP+ cytotoxic astrocytes but not in S100A10+ GFAP+ homeostatic astrocytes in BCAS-Veh mice. In contrast, ZT-1a-treated BCAS mice displayed reduced expression and phosphorylation of NKCC1, decreased astrogliosis, OL death, and WML, along with improved memory functions. CONCLUSION: BCAS-induced upregulation of WNK-SPAK-NKCC1 signaling contributes to white matter-reactive astrogliosis, OL death, and memory impairment. Pharmacological inhibition of the SPAK activity has therapeutic potential for alleviating pathogenesis and memory impairment in VCID.


Assuntos
Disfunção Cognitiva , Demência Vascular , Animais , Camundongos , Gliose/tratamento farmacológico , Modelos Animais de Doenças , Cognição , Inflamação
3.
Front Immunol ; 13: 884126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493493

RESUMO

White fat stores excess energy, and thus its excessive expansion causes obesity. However, brown and beige fat, known as adaptive thermogenic fat, dissipates energy in the form of heat and offers a therapeutic potential to counteract obesity and metabolic disorders. The fat type-specific biological function is directed by its unique tissue microenvironment composed of immune cells, endothelial cells, pericytes and neuronal cells. Macrophages are major immune cells resident in adipose tissues and gained particular attention due to their accumulation in obesity as the primary source of inflammation. However, recent studies identified macrophages' unique role and regulation in thermogenic adipose tissues to regulate energy expenditure and systemic energy homeostasis. This review presents the current understanding of macrophages in thermogenic fat niches with an emphasis on discrete macrophage subpopulations central to adaptive thermoregulation.


Assuntos
Tecido Adiposo Marrom , Células Endoteliais , Tecido Adiposo Marrom/metabolismo , Células Endoteliais/metabolismo , Humanos , Macrófagos/metabolismo , Obesidade , Termogênese/fisiologia
4.
J Agric Food Chem ; 69(21): 6032-6042, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34008977

RESUMO

Although the health benefits of probiotics have been widely known for decades, there has still been limited use of probiotic bacteria in anti-obesity therapy. Herein, we demonstrated the role of Bifidobacterium longum subsp. infantis YB0411 (YB, which was selected by an in vitro adipogenesis assay) in adipogenic differentiation in 3T3-L1 pre-adipocytes. We observed that YB-treatment effectively reduced triglyceride accumulation and the expression of CCAAT/enhancer-binding protein α, ß, and δ (C/EBPα, C/EBPß, and C/EBPδ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (aP2), and acetyl-CoA carboxylase (ACC). YB-treatment also reduced the levels of core autophagic markers (p62 and LC3B) in 3T3-L1 pre-adipocytes. Small-interfering-RNA-mediated knockdown and competitive-chemical-inhibition assays showed that AMP-activated protein kinase (AMPK) commenced the anti-adipogenic effect of YB. In addition, YB supplement markedly reduced body weight and fat accretion in mice with high-fat-diet-induced obesity. Our findings suggest that YB may be used as a potential probiotic candidate to ameliorate obesity.


Assuntos
Adipogenia , Bifidobacterium longum , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Adipócitos , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Diferenciação Celular , Camundongos , Obesidade/genética , PPAR gama/genética
5.
Phytother Res ; 35(2): 920-931, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32840919

RESUMO

In this study, we investigated the effect of Biochanin A (BioA), an O-methylated isoflavone on the brown-fat phenotype formation and on the associated thermogenic program including mitochondrial biogenesis and lipolysis in C3H10T1/2 MSCs. Our data demonstrates that Treatment with BioA in an adipogenic differentiation cocktail induced formation of brown-fat-like adipocytes from C3H10T1/2 MSCs without treatment with a known browning inducer (rosiglitazone or T3) at an early stage of differentiation. The formation of brown-fat-like adipocytes by BioA treatment was evidenced by upregulation of key thermogenic markers: Ucp1, Pgc1α, Prdm16, and Pparγ. BioA also increased the expression of beige (Cd137 and Fgf21) and brown (Elovl3 and Zic1)-specific markers. Additionally, BioA treatment promoted mitochondrial biogenesis, judging by the upregulation of genes; Cox8b, Cidea, Dio2, Sirt1, Opa1, and Fis1. BioA treatment increased the amount of mitochondrial DNA and its encoded proteins: oxidative phosphorylation complexes (I-V); this change was associated with high oxygen consumption by C3H10T1/2 MSCs. A small-interfering-RNA-induced gene knockdown and experiments with dorsomorphin-driven competitive inhibition revealed that BioA exerts the thermogenic action via activation of AMPK signaling. Our study shows the mechanism of BioA-induced promotion of a brown-fat phenotype. Nonetheless, clinical research is necessary to validate BioA as a brown-fat-like signature inducer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Anticarcinógenos/uso terapêutico , Genisteína/uso terapêutico , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Anticarcinógenos/farmacologia , Diferenciação Celular , Genisteína/farmacologia , Camundongos , Biogênese de Organelas , Transdução de Sinais , Transfecção
6.
Cell Mol Biol (Noisy-le-grand) ; 66(4): 15-19, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32583769

RESUMO

Gamma-aminobutyric acid (GABA) receptors belong to a ligand-gated ion channels family and are markedly expressed at the axon terminals of retinal bipolar cells. Ascorbic acid (AA), a known and vital antioxidant in the brain can modulate GABA receptors. We postulate that AA would antagonize benzodiazepines' effect via GABA receptor(s) interacting pathway. Here, we evaluated the modulatory sedative effect of AA on diazepam (DZP)'s anxiolytic effects in Swiss albino mice. The anxiolytic study was accomplished by using open-field, hole-board, and by swing and light-dark tests taking DZP as a standard anxiolytic drug. To understand the possible modulatory effects of AA, animals were co-administered with AA and DZP and/or its antagonist flumazenil (FLU). Additionally, an in-silico study was undertaken against GABA(A1), GABA(B1), and GABA(Aρ1) receptors. Data suggest that AA at 25 mg/kg (i.p.) increased (p<0.05) the number of field cross, rearing, number of hole cross, and swing and residence, while decreased grooming and dark residence parameters as compared to the control and DZP groups. In addition, AA and/or FLU combined with DZP (2 mg/kg, i.p.) reversed DZP-mediated sedative effects in mice. Results from in silico study suggest that AA has good interactions with GABA(Aρ1) and GABA(B1) receptors. In conclusion, DZP is a GABA receptor agonist and AA may reverse DZP-mediated sedative effects in a non-competitive binding fashion in mice through inhibition of GABA(Aρ1) and GABA(B1) receptors.


Assuntos
Ácido Ascórbico/farmacologia , Diazepam/farmacologia , Hipnóticos e Sedativos/farmacologia , Receptores de GABA/metabolismo , Animais , Ácido Ascórbico/química , Simulação por Computador , Camundongos
7.
Food Chem Toxicol ; 141: 111415, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32417366

RESUMO

Mangiferin (MF) from Mangifera indica has been serendipitously found to ameliorate obesity and is used as an antioxidant, anti-inflammatory, antimicrobial, and anticancer agent. Nonetheless, the mechanism of MF-induced brown-adipose-tissue activation has not been studied. Therefore, we investigated the effect of MF on thermogenic features during brown-adipocyte differentiation. Treatment with MF improved the expression of a brown-fat signature and of mitochondrial-mass-related genes, thus resulting in UCP1 induction. MF also raised the expression of other thermogenic regulators, including peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), PR domain-containing protein 16 (PRDM16), and peroxisome proliferator-activated receptors alpha and gamma (PPAR-α and -γ). MF promoted mitochondrial biogenesis, judging by increased expression of cell death-inducing DNA fragmentation factor α-like effector A (CIDEA), mitochondrial transcription factor A (TFAM), iodothyronine deiodinase 2 (DIO2), cytochrome c oxidase subunit 7A (COX7A), cyclooxygenase 2 (COX2), sirtuin 1 (SIRT1), and nuclear respiratory factor 1 (NRF1). MF treatment increased the mitochondrial DNA amount and improved mitochondrial respiratory function by increasing the oxygen consumption rate during brown-adipocyte differentiation. A gene knockdown assay involving small interfering RNA and competitive inhibition with dorsomorphin revealed that MF may promote thermogenesis in brown preadipocytes via activation of AMPK signaling. Collectively, our findings suggest that MF may be a novel pharmaceutical agent that can ameliorate obesity via activation of brown adipose tissue.


Assuntos
Adenilato Quinase/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Xantonas/farmacologia , Adipócitos Marrons/citologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Termogênese/genética
8.
Metabolism ; 107: 154228, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32289346

RESUMO

OBJECTIVE: Mangiferin (MF), a xanthonoid derived from Mangifera indica, has shown therapeutic effects on various human diseases including cancer, diabetes, and obesity. Nonetheless, the influence of MF on non-shivering thermogenesis and its underlying mechanism in browning remains unclear. Here, our aim was to investigate the effects of MF on browning and its molecular mechanisms in murine C3H10T1/2 mesenchymal stem cells (MSCs). MATERIALS/METHODS: To determine the function of MF on browning, murine C3H10T1/2 MSCs were treated with MF in an adipogenic differentiation cocktail and the thermogenic and correlated metabolic responses were assessed using MF-mediated signalling. Human adipose-derived MSCs were differentiated and treated with MF to confirm its role in thermogenic induction. RESULTS: MF treatment induced the expression of a brown-fat signature, UCP1, and reduced triglyceride (TG) in C3H10T1/2 MSCs. MF also induced the expression of major thermogenesis regulators: PGC1α, PRDM16, and PPARγ and up-regulated the expression of beiging markers CD137, HSPB7, TBX1, and COX2 in both murine C3H10T1/2 MSCs and human adipose-derived mesenchymal stem cells (hADMSC). We also observed that MF treatment increased the mitochondrial DNA and improved mitochondrial homeostasis by regulating mitofission-fusion plasticity via suppressing PINK1-PRKN-mediated mitophagy. Furthermore, MF treatment improved mitochondrial respiratory function by increasing mitochondrial oxygen consumption and expression of oxidative-phosphorylation (OXPHOS)-related proteins. Chemical-inhibition and gene knockdown experiments revealed that ß3-AR-dependent PKA-p38 MAPK-CREB signalling is crucial for MF-mediated brown-fat formation via suppression of mitophagy in C3H10T1/2 MSCs. CONCLUSIONS: MF promotes the brown adipocyte phenotype by suppressing mitophagy, which is regulated by PKA-p38MAPK-CREB signalling in C3H10T1/2 MSCs. Thus, we propose that MF may be a good browning inducer that can ameliorate obesity.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Xantonas/farmacologia , Adipócitos Marrons/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C3H , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Quinases/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Termogênese/genética , Ubiquitina-Proteína Ligases/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos
9.
BMB Rep ; 53(3): 142-147, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31401979

RESUMO

Lipid accumulation in white adipose tissue is the key contributor to the obesity and orchestrates numerous metabolic health problems such as type 2 diabetes, hypertension, atherosclerosis, and cancer. Nonetheless, the prevention and treatment of obesity are still inadequate. Recently, scientists found that brown adipose tissue (BAT) in adult humans has functions that are diametrically opposite to those of white adipose tissue and that BAT holds promise for a new strategy to counteract obesity. In this study, we evaluated the potential of sinapic acid (SA) to promote the thermogenic program and lipolysis in BAT. SA treatment of brown adipocytes induced the expression of brown-adipocyte activation-related genes such as Ucp1, Pgc-1α, and Prdm16. Furthermore, structural analysis and western blot revealed that SA upregulates protein kinase A (PKA) phosphorylation with competitive inhibition by a pan-PKA inhibitor, H89. SA binds to the adenosine triphosphate (ATP) site on the PKA catalytic subunit where H89 binds specifically. PKA-cat-α1 gene-silencing experiments confirmed that SA activates the thermogenic program via a mechanism involving PKA and cyclic AMP response element-binding protein (CREB) signaling. Moreover, SA treatment promoted lipolysis via a PKA/p38-mediated pathway. Our findings may allow us to open a new avenue of strategies against obesity and need further investigation. [BMB Reports 2020; 53(3): 142-147].


Assuntos
Tecido Adiposo Marrom/metabolismo , Ácidos Cumáricos/metabolismo , Termogênese/genética , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/fisiologia , Linhagem Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipólise/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
10.
Phytother Res ; 33(10): 2585-2608, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31373097

RESUMO

Traditionally, sesame oil (SO) has been used as a popular food and medicine. The review aims to summarize the antioxidant and antiinflammatory effects of SO and its identified compounds as well as further fatty acid profiling and molecular docking study to correlate the interaction of its identified constituents with cyclooxygenase-2 (COX-2). For this, a literature study was made using Google Scholar, Pubmed, and SciFinder databases. Literature study demonstrated that SO has potential antioxidant and antiinflammatory effects in various test systems, including humans, animals, and cultured cells through various pathways such as inhibition of COX, nonenzymatic defense mechanism, inhibition of proinflammatory cytokines, NF-kB or mitogen-activated protein kinase signaling, and prostaglandin synthesis pathway. Fatty acid analysis of SO using gas chromatography identified known nine fatty acids. In silico study revealed that sesamin, sesaminol, sesamolin, stigmasterol, Δ5-avenasterol, and Δ7-avenasterol (-9.6 to -10.7 kcal/mol) were the most efficient ligand for interaction and binding with COX-2. The known fatty acid also showed binding efficiency with COX-2 to some extent (-6.0 to -8.4 kcal/mol). In summary, it is evident that SO may be one of promising traditional medicines that we could use in the prevention and management of diseases associated with oxidative stress and inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Óleo de Gergelim/farmacologia , Animais , Humanos , Estresse Oxidativo/efeitos dos fármacos , Óleo de Gergelim/análise , Óleo de Gergelim/química
11.
IUBMB Life ; 71(9): 1192-1200, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31021508

RESUMO

In this article, we have summarized the biological sources and pharmacological activities of agathisflavone along with molecular docking studies to correlate the interaction of this biflavonoid and biomacromolecules involving in its biological effects observed in database-oriented scientific reports. For this, an up-to-date (from 1991 to October 2018) search was done on the databases such as PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society, Clinicaltrials.gov, and Google Scholar databases. The findings suggest that agathisflavone possesses antioxidant, anti-inflammatory, antiviral, antiparasitic, cytotoxic, neuroprotective, and hepatoprotective activities. An in silico study of agathisflavone against 17 essential proteins/enzymes revealed that inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 are the most efficient enzymes for the interaction and binding of this biflavonoid for its anti-inflammatory activity. In conclusion, agathisflavone may be one of the promising plant-derived lead compounds in the treatment of oxidative stress, inflammatory diseases, microbial infection, hepatic and neurological diseases and disorders, and cancer. © 2019 IUBMB Life, 71(9):1192-1200, 2019.


Assuntos
Anti-Inflamatórios/química , Antioxidantes/química , Biflavonoides/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Biflavonoides/uso terapêutico , Simulação por Computador , Ciclo-Oxigenase 2/genética , Humanos , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II/genética , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Ligação Proteica/genética
12.
Front Pharmacol ; 9: 1164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374304

RESUMO

Present study was undertaken to evaluate the analgesic activity of the ethanol extract of Chrysopogon aciculatus. In addition to bioassays in mice, chemical profiling was done by LC-MS and GC-MS to identify phytochemicals, which were further docked on the catalytic site of COX-2 enzymes with a view to suggest the possible role of such phytoconstituents in the observed analgesic activity. Analgesic activity of C. aciculatus was evaluated by acetic acid induced writhing reflex method and hot plate technique. Phytochemical profiling was conducted using liquid chromatography mass spectrometry (LC-MS) and gas chromatography mass spectrometry (GC-MS). In docking studies, homology model of human COX-2 enzyme was prepared using Easy Modeler 4.0 and the identified phytoconstituents were docked using Autodock Vina. Preliminary acute toxicity test of the ethanol extract of C. aciculatus showed no sign of mortality at the highest dose of 4,000 mg/kg. The whole plant extract significantly (p < 0.05) inhibited acetic acid induced writhing in mice at the doses of 500 and 750 mg/kg. The extract delayed the response time in hot plate test in a dose dependent manner. LC-MS analysis of the plant extract revealed the presence of aciculatin, nudaphantin and 5α,8α-epidioxyergosta-6,22-diene-3ß-ol. Three compounds namely citronellylisobutyrate; 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one and nudaphantin were identified in the n-hexane fraction by GC-MS. Among these compounds, six were found to be interacting with the binding site for arachidonic acid in COX-2 enzyme. Present study strongly supports the traditional use of C. aciculatus in the management of pain. In conclusion, compounds (tricin, campesterol, gamma oryzanol, and citronellyl isobutyrate) showing promising binding affinity in docking studies, along with previously known anti-inflammatory compound aciculatin can be held responsible for the observed activity.

13.
Drug Dev Ind Pharm ; 41(8): 1338-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25138349

RESUMO

The objective of this work was to formulate a Self Emulsifying Drug Delivery System (SEDDS) of simvastatin, a poorly soluble drug and to evaluate by in vivo, in vitro and ex vivo techniques. Oils and surfactants were screened out depending upon their solubilizing capacity. Among all of the solvents, Capryol 90 showed good solubilizing capacity. It dissolved 105 mg/ml of simvastatin. Tween-80 also showed good solubilizing capacity which was 117 mg/ml. The two excipients were used to prepare simvastatin SEDDS. Formulations were initially checked for the color, clarity and sedimentation. The SEDDS formulations were transparent and clear. Formulation F2 containing 7:3 (m/m) mixture of Capryol 90/Tween-80 produced smallest micro-emulsion with particles size of 0.074 µm and drug release was higher than other formulation (102% within 20 min). Ex vivo study of the SEDDS formulation was evaluated using guinea pig intestinal sac. Drug diffused from F2 formulation was significantly higher than pure drug (p < 0.001). In vivo study of SEDDS was performed in albino mice using plasma cholesterol level as a pharmacodynamic marker parameter. The test formulation (F2) appeared remarkable reduction in plasma cholesterol level, after oral administration which showed that SEDDS may be an effective technique for the oral administration of simvastatin.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsificantes/administração & dosagem , Emulsificantes/farmacocinética , Sinvastatina/administração & dosagem , Sinvastatina/farmacocinética , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Cobaias , Camundongos , Técnicas de Cultura de Órgãos
14.
Artigo em Inglês | MEDLINE | ID: mdl-23366848

RESUMO

Estimation of joint angles for human joints is important for many applications in Bioengineering. Most of the existing angular joint sensors rely on the assumption of the knowledge of the type of motion and location of the joint. This paper presents a new design for the measurement of finger joint angular motion. The design presented here consists of an exoskeleton, designed to fit the finger motion, in which we can relate the angular displacement of its links to the change in orientation of the phalanx under consideration. Unlike other designs, the exoskeleton does not need any information about the actual anatomy and dimensions of the hand in order to provide with the angular information. The design is to be used in myoelectrical signal identification.


Assuntos
Artrometria Articular/instrumentação , Desenho Assistido por Computador , Articulações dos Dedos/anatomia & histologia , Articulações dos Dedos/fisiologia , Modelos Biológicos , Monitorização Ambulatorial/instrumentação , Amplitude de Movimento Articular/fisiologia , Robótica/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA